

for Rheumatologists:

Diagnosing and Managing Fibrosing

INTERSTITIAL LUNG DISEASES

WEDNESDAY, OCTOBER 29, 2025

Educational grant support for this session is provided by Boehringer Ingelheim Pharmaceuticals, Inc. and sponsored by Med Learning Group. This is not an official program of the American College of Rheumatology.

AGENDA

- I. Introduction
- II. The F-ILs: An Overview for Rheumatologists
 - a. IPF vs SARD-ILD
 - b. Mechanisms underlying disease development and progression in F-ILDs
 - c. Survival with SARD-ILD vs interstitial pneumonia
 - d. Diagnosing
- III. Case #1: Adult patient with possible connective tissues disease-associated ILD
- IV. Diagnosing F-ILDs
 - a. Updated ACR diagnostic guidelines
 - b. Interpreting from recommended testing methods
- V. Case #2: Adult patient with rheumatoid arthritis-associated interstitial lung disease (RA-ILD)
- VI. The Evolving F-ILD Treatment Landscape
 - a. RA-UIP vs IPF Demographics, Histology, Pathobiology
 - b. Risk factors for SSc-ILD progression
 - c. Updated ACR management guidelines
 - d. Clinical profiles of current and emerging therapies
- VII. Case #3: Adult patient with advanced SSc-associated ILD with possible secondary pulmonary hypertension
- VIII. Conclusions

Clinical Pearls for Rheumatologists: Diagnosing and Managing Fibrosing Interstitial Lung Diseases

FACULTY

Kristin B. Highland, MD, MSCR
Professor of Medicine
Cleveland Clinic
Cleveland, Ohio

PROGRAM DESCRIPTION

This program explores the pathophysiology, clinical features, and overall burden of fibrosing interstitial lung diseases (F-ILDs), with a focus on idiopathic pulmonary fibrosis (IPF), progressive pulmonary fibrosis (PPF), and systemic autoimmune rheumatic disease—associated ILD (SARD-ILD). Participants will gain strategies to enhance diagnostic accuracy, interpret evidence from clinical trials of emerging therapies, and translate findings into practice. The program also emphasizes the critical role of multidisciplinary collaboration in delivering comprehensive, patient-centered management for individuals living with F-ILDs.

TARGET AUDIENCE

This activity is designed to meet the educational needs of rheumatologists.

LEARNING OBJECTIVES:

After completing the CME activity, learners should be better able to:

- Describe the pathophysiology, clinical characteristics, and burdens associated with F-ILDs including IPF, PPF, and SARD-ILD
- Improve diagnostic accuracy of F-ILDs including IPF, PPF, and SARD-ILD
- Interpret results from clinical trials assessing new and emerging treatment options for F-ILDs including IPF, PPF, and SARD-ILD
- Implement multidisciplinary teamwork essential for comprehensive management of F-ILDs including IPF, PPF, and SARD-ILD

JOINT ACCREDIDATION STATEMENT

In support of improving patient care, Med Learning Group is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

PHYSICIAN CREDIT DESIGNATION STATEMENT

Med Learning Group designates this live activity for a maximum of 1.50 *AMA PRA Category 1 Credits* TM. Physicians should claim only the credit commensurate with the extent of their participation in the live activity.

NURSES (ANCC) CREDIT DESIGNATION

Med Learning Group designates this activity for a maximum of 1.50 ANCC contact hours.

DISCLOSURE POLICY STATEMENT

In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards for Integrity and Independence in Accredited Continuing Education, educational programs sponsored by Med Learning Group must demonstrate balance, independence, objectivity, and scientific rigor. All faculty, authors, editors, staff, and planning committee members participating in an MLG-sponsored activity are required to disclose any relevant financial interest or other relationship with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services that are discussed in an educational activity.

DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIPS

Kristin B. Highland, MD, MSCR	Consulting Fee	Atyr Pharmaceuticals, Avalyn, Boehringer Ingelheim, Gossamer Bio, Johnson & Johnson, Merck & Co., Pulmovant, United Therapeutics	
	Speaker Bureau	Boehringer Ingelheim, Johnson & Johnson, United Therapeutics	
	Contracted research	Atyr Pharmaceuticals, Gossamer Bio, Merck & Co., United Therapeutics	

All relevant financial relationships have been mitigated.

Content Review

The content of this activity was independently peer reviewed by a physician and nurse reviewer.

Individuals in Control of the Content of the Activity

The individuals in control of the content of this activity have reported the following financial relationships or relationships to products or devices they have with ineligible companies related to the content of this CE activity:

Matthew Frese, MBA, CEO of Med Learning Group, has nothing to disclose.

Lauren Welch, MA, Senior VP of Operations for Med Learning Group, has nothing to disclose.

Dominique Barton, BS BSN, has nothing to disclose.

A medical reviewer from CME Peer Review LLC, has nothing to disclose.

Lisa Kuhns, PhD, Medical Director for Med Learning Group, has nothing to disclose.

Tom Bregartner, MBA, VP of Outcomes and Accreditation for Med Learning Group, has nothing to disclose.

Aimee Meissner, Outcomes and Accreditation Coordinator for Med Learning Group, has nothing to disclose.

Felecia Beachum, Sr. Program Manager for Med Learning Group, has nothing to disclose.

DISCLOSURE OF UNLABELED USE

Med Learning Group requires that faculty participating in any CE activity disclose to the audience when discussing any unlabeled or investigational use of any commercial product or device not yet approved for use in the United States. During the course of this lecture, the faculty may mention the use of medications for both FDA-approved and non-approved indications.

METHOD OF PARTICIPATION

There are no fees for participating and receiving CE credit for this activity. In order to obtain your certificate for the mentioned accreditation, participants need to successfully complete the associated pre/post activities and evaluation. Your certificate will be provided as a downloadable file.

DISCLAIMER

Med Learning Group makes every effort to develop CE activities that are scientifically based. This activity is designed for educational purposes. Participants have a responsibility to utilize this information to enhance their professional development in an effort to improve patient outcomes. Conclusions drawn by the participants should be derived from careful consideration of all available scientific information. The participant should use his/her clinical judgment, knowledge, experience, and diagnostic decision-making expertise before applying any information, whether provided here or by others, for any professional use.

For CE questions, please contact Med Learning Group at info@medlearninggroup.com

Contact this CE provider at Med Learning Group for privacy and confidentiality policy statement information at www.medlearninggroup.com/privacy-policy/

AMERICANS WITH DISABILITIES ACT

Event staff will be glad to assist you with any special needs (eg, physical, dietary, etc). Please contact Med Learning Group at info@medlearninggroup.com

This activity is provided by Med Learning Group.

This activity is supported by an independent medical educational grant from Boehringer Ingelheim Pharmaceuticals, Inc.

Copyright © 2025 Med Learning Group. All rights reserved. These materials may be used for personal use only. Any rebroadcast, distribution, or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Med Learning Group is prohibited.

Clinical Pearls for Rheumatologists: Diagnosing and Managing Fibrosing Interstitial Lung Diseases

Kristin B. Highland, MD, MSCR

Professor of Medicine Cleveland Clinic Cleveland, OH

0

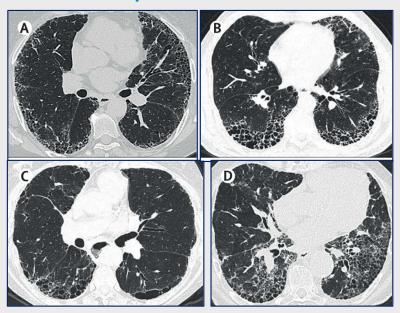
Disclosures

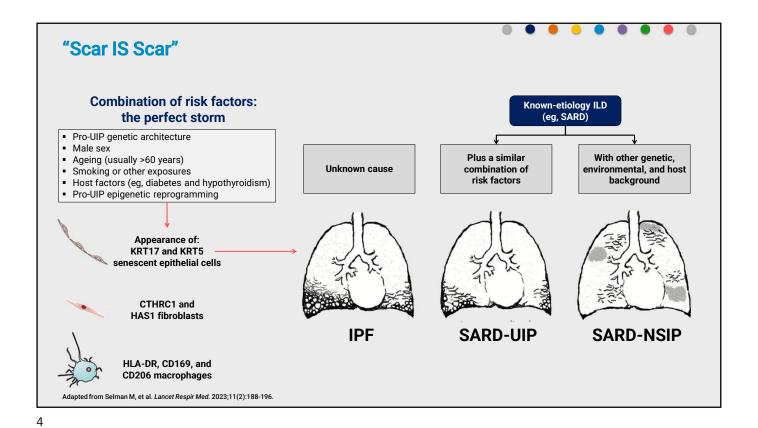
Kristin B. Highland, MD, MSCR discloses the following:

Consulting Fees	Atyr Pharmaceuticals, Avalyn, Boehringer Ingelheim, Gossamer Bio, Johnson & Johnson, Merck & Co., Pulmovant, United Therapeutics
Speaker Bureau	Boehringer Ingelheim, Johnson & Johnson, United Therapeutics
Contracted Research	Atyr Pharmaceutical, Gossamer Bio, Merch & Co., United Therapeutics

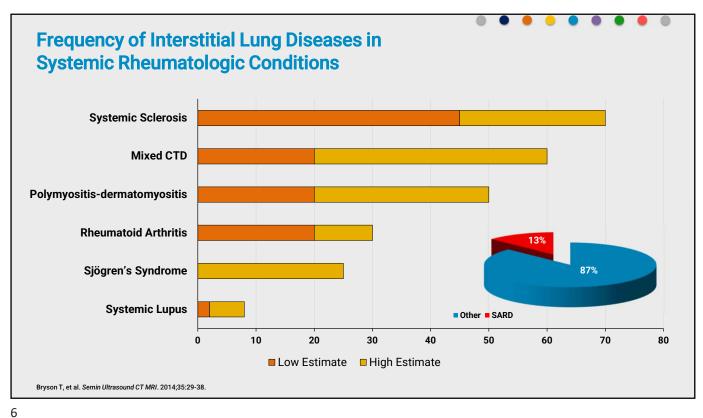
 During this lecture, the presenter may mention the use of medications for both US Food and Drug Administration (FDA)-approved and non-FDA-approved indications

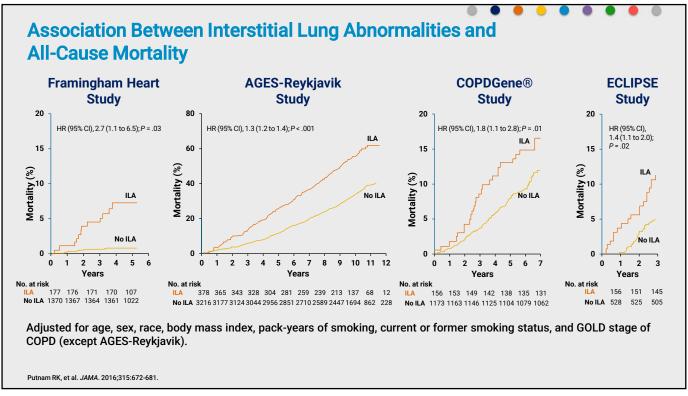
All relevant financial relationships have been mitigated.


This activity is supported by an independent medical educational grant from Boehringer Ingelheim Pharmaceuticals, Inc.

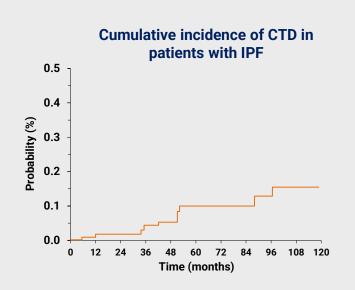

Learning Objectives

- Describe the pathophysiology, clinical characteristics, and burdens associated with fibrosing interstitial lung diseases (F-ILDs), including idiopathic pulmonary fibrosis (IPF), progressive pulmonary fibrosis (PPF), and systemic autoimmune rheumatic diseaseassociated interstitial lung disease (SARD-ILD)
- Improve diagnostic accuracy of F-ILDs, including IPF, PPF, and SARD-ILD
- Interpret results from clinical trials assessing new and emerging treatment options for F-ILDs, including IPF, PPF, and SARD-ILD
- Implement multidisciplinary teamwork essential for comprehensive management of F-ILDs, including IPF, PPF, and SARD-ILD


2


Audience Response Question Which patient has IPF? Which patient has SARD-ILD?

IT MATTERS: Survival of Patients With SARD-ILD Compared With Idiopathic Interstitial Pneumonia 100 N=362 patients with interstitial pneumonia - SARD-ILD n=93 80 - IIP n=269 Percent survival Baseline lung function was not significantly 60 different between groups 40 20 SARD-ILD P < .001 0 24 96 120 144 168 192 Follow-up period (months) Park JH, et al. Am J Respir Crit Care Med. 2007;175:705-711.


Diagnosis of IPF May Precede Incident SARDs

Retrospective review of 111 consecutive patients diagnosed with IPF

 None fulfilled any criteria for SARDs within 6 months or more of IPF diagnosis

9.0% developed a SARD during 10 years of follow-up, including

- Rheumatoid arthritis
- Microscopic polyangiitis
- Systemic sclerosis
- Sjögren's syndrome

Kono M, et al. PLoS One. 2014;9(4):e94775.

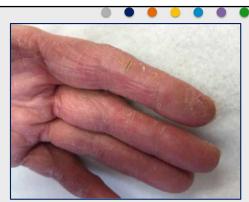
8

Case 1

- 49-year-old African American female
- Progressive DOE x 12 months
- ANA 1:320 (speckled)
- No overt CTD signs & symptoms
- FVC 49% predicted
- DLCO 52% predicted
- Referred to rheumatology

Interstitial Pneumonia With Autoimmune Features (IPAF): Classification Criteria

Research designation for indeterminate ILD with the following features:


- Presence of interstitial pneumonia, and
- Exclusion of alternative etiologies, and
- Does not meet the criteria of a defined connective tissue disease, and
- At least one feature from at least two domains
 - Clinical
 - Serologic
 - Morphologic

Fischer A, et al. Eur Respir J. 2015;46:976-987

10

IPAF Clinical Domain

- Distal digital fissuring (mechanic's hands)
- Distal digital tip ulceration
- Inflammatory arthritis or polyarticular morning stiffness ≥60 min
- Palmar telangiectasia
- Raynaud phenomenon
- Unexplained digital edema
- Unexplained fixed rash on the digital extensor surfaces (Gottron's sign)

Fischer A, et al. Eur Respir J. 2015;46:976-987

Audience Response Question

Which of the following serologic findings meets the positive classification criterion for IPAF?

- A. Low titer ANA
- B. Abnormal anti-CCP
- C. Low titer rheumatoid factor
- D. Abnormal C-reactive protein

IPF = idiopathic pulmonary fibrosis.

12

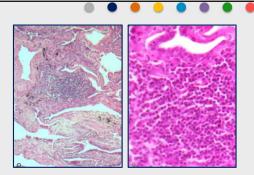
IPAF: Serologic Domain

Not Included in Criteria:

- Low titer ANA
- Low titer rheumatoid factor
- Erythrocyte sedimentation rate
- C-reactive protein
- Creatine phosphokinase
 - May be ordered to screen for dermatomyositis/ polymyositis

Presence:

- ANA ≥1:320 titer, diffuse, speckled, homogeneous patterns or
 - a) ANA nucleolar pattern (any titer) or
 - b) ANA centromere pattern (any titer)
- Rheumatoid factor ≥2× upper limit of normal
- Anti-CCP
- Anti-dsDNA
- Anti-Ro (SS-A)
- Anti-La (SS-B)
- Anti-ribonucleoprotein
- Anti-Smith
- Anti-topoisomerase (Scl-70)
- Anti-tRNA synthetase

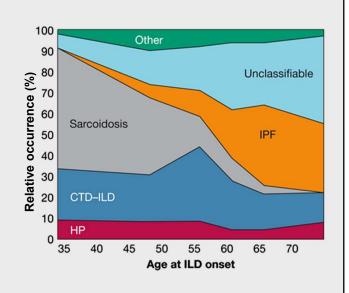

(eg, Jo-1, PL-7, PL-12; others are: EJ, OJ, KS, Zo, tRS)

- Anti-PM-Scl
- Anti-MDA-5

Fischer A, et al. Eur Respir J. 2015;46:976-987

IPAF: Morphological Domain

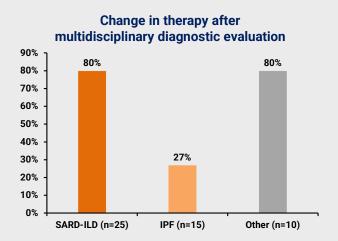
- HRCT or histopathology patterns
 - NSIP
 - OP
 - NSIP with OP overlap
 - LIP
- Additional histology patterns
 - Interstitial lymphoid aggregates with germinal centers
 - Diffuse lymphoplasmacytic infiltration (with or without lymphoid follicles)



- Unexplained multi-compartment involvement
 - Pleural effusion or thickening
 - Pericardial effusion or thickening
 - Intrinsic airway disease
 - Airflow obstruction, bronchiolitis, or bronchiectasis
 - Pulmonary vasculopathy

14

Comparison of Demographic and Clinical Characteristics Between Patients With IPF/UIP and SARD-UIP


Variable	IPF (n=88)	SARD (n=67)
Age, years	64.4 ± 13.5	56.8 ± 14.1
Female, %	35	72
Ever smoker, %	40	19
Disease duration, months	31.7 ± 18.0	39.2 ± 18.3

Alhamad EH. J Thorac Dis. 2015;7(3):386-393. Patterson KC, et al. Chest. 2017;151(4):838-844.

Impact of Rheumatological Evaluation in the Management of Patients With ILD

- N=50 consecutive patients referred to interdisciplinary ILD clinic over a 12-month period for diagnostic and management recommendations
- 11 (22%) patients with an initial referral diagnosis of IPF or ILD NOS were found to have a SARD
 - 9 (18%) referred with a SARD-ILD diagnosis had a final diagnosis of an alternate SARD-ILD
- Most patients had their treatment regimen changed

By final diagnosis: "Other" includes cryptogenic organizing pneumonia, drug-induced ILD, and vasculitis.

Castelino FV, et al. Rheumatology. 2011;50:489-493.

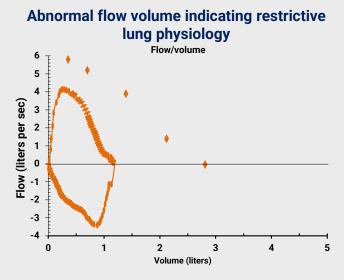
16

Diagnostic Work-up: Clinical Presentation

- Chronic dyspnea (may be overshadowed by extrapulmonary complaints)
 - Acute respiratory failure can occur in IIM and RA
- Cough (dry, nonproductive)
- Fatique
- Exercise desaturation
- Bibasilar inspiratory crackles
- Can occur before extrapulmonary manifestations
- Severity/activity of ILD does not correlate with severity/activity of extrapulmonary manifestations

Video Case Part 1: Proactive Screening in Systemic Sclerosis https://youtu.be/TH7yGyGzHz0

Audience Response Question

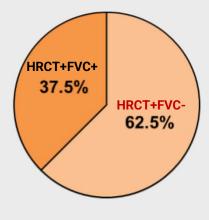

Which of the following pulmonary function test findings is most consistent with interstitial lung disease (ILD)?

- A. Increased total lung capacity and elevated DLCO
- B. Reduced forced vital capacity (FVC) and impaired DLCO
- C. Normal spirometry and normal DLCO
- **D.** Obstructive flow-volume loop with increased residual volume

18

Pulmonary Function Testing for Suspected ILD

- ILD is characterized by restrictive lung physiology
 - Forced vital capacity (FVC) <80% of control is abnormal; <50% severely abnormal
- Diffusing capacity for carbon monoxide (DLCO) is often impaired
- Patients with concurrent emphysema may exhibit normal lung volumes and spirometry, but reduced DLCO
- Low baseline FVC, decline in FVC, low DLCO, and decline in 6MWT are associated with decreased survival

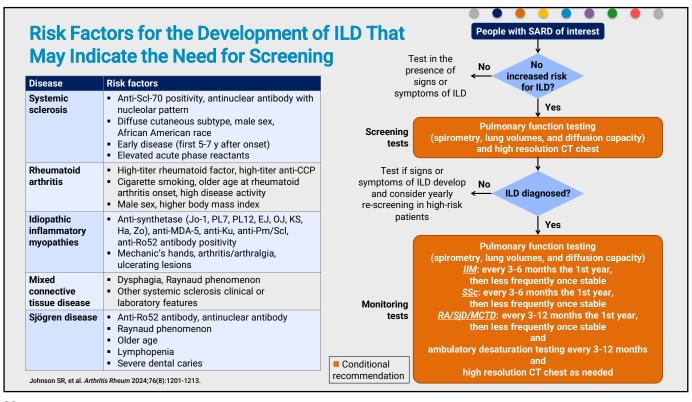


Wallace B, et al. Curr Opin Rheumatol. 2016;28(3):236-245. Vecchi E, et al. Respir Investig. 2025;63(3):334-341.

20

PFTs Alone May Miss ILD

- N=102 SSc patients
- 64/102 (63.0%) with significant ILD on HRCT
- 27/102 (26.0%) with FVC <80%


40/64 (62.5%) patients with significant ILD on HRCT had a normal FVC

Suliman YA, et al. Arthritis Rheumatol. 2015;67:3256-3261.

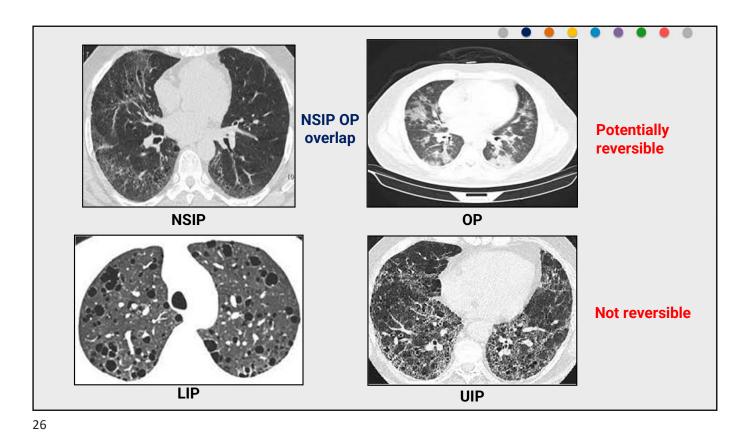
focuSSced: Baseline Demographics and Disease Characteristics

	All patients N=210	PB0 n=106	TCZ n=104
Females, %	81	85	78
Age, years	48.2 (12.4)	49.3 (12.6)	47.0 (12.2)
Duration of SSc, months	22.6 (16.5)	23.1 (17.0)	22.2 (16.0)
Total mRSS	20.4 (6.8)	20.4 (7.0)	20.3 (6.7)
%pFVC	82.1 (14.8)	83.9 (15.0)	80.3 (14.4)
%pDLCO	75.6 (18.9)	76.8 (18.6); n=105	74.4 (19.2)
HAQ-DI	1.2 (0.7)	1.3 (0.7)	1.1 (0.8)
Patient VAS	56.8 (22.9)	59.3 (21.3)	54.3 (24.3)
CRP, mg/L	7.9 (13.1)	7.0 (11.1)	8.9 (14.8)
ESR, mm/h	34.8 (17.4)	34.7 (18.5); n=103	34.8 (16.3); n=100
Platelet count, 109/L	304.9 (92.2)	298.7 (96.0)	311.1 (88.2)
ANA positive, n/N (%)	181/196 (92.3)	90/98 (91.8)	91/98 (92.9)
Anti-topoisomerase positive, n/N (%)	101/200 (50.5)	49/100 (49.0)	52/100 (52.0)
Anti-RNA polymerase positive, n/N (%)	35/200 (17.5)	16/100 (16.0)	19/100 (19.0)
Anti-centromere positive, n/N (%)	17/200 (8.5)	9/100 (9.0)	8/100 (8.0)
SSc-ILD (HRCT visual read), n/N (%)	132/206 (64.1)	65/104 (62.5)	67/102 (65.7)

Khanna D, et al. Ann Rheum Dis. 2018;77(2):212-220. http://dx.doi.org/10.1136/annrheumdis-2017-211682.

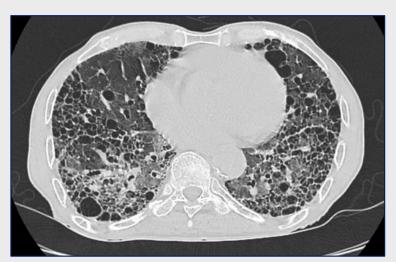
Relative Prevalence of Thoracic Findings in SARDs

	SSc	RA	SLE	DM/PM	MCTD	SjS
ILD overall	+++	++	+	+++	++	++
NSIP	+++	++	++	+++	++	++
UIP	+	+++	+	+	+	+
OP	+	++	+	+++	+	_
LIP	_	+	+	_	_	++
DAD	++	+	++	++	_	+


Bryson T, et al. Semin Ultrasound CT MRI. 2014;35:29-38.

24

Relative Prevalence of Thoracic Findings in SARDs


	SSc	RA	SLE	DM/PM	MCTD	SjS
ILD overall	+++	++	+	+++	++	++
NSIP	+++	++	++	+++	++	++
UIP	+	+++	+	+	+	+
OP	+	++	+	+++	+	_
LIP	_	+	+	_	_	++
DAD	++	+	++	++	-	+

Bryson T, et al. Semin Ultrasound CT MR. 2014;35:29-38.

Case 2

- 70-year-old man referred for IPF
- 30 pack years
- Velcro crackles
- FVC 58% predicted
- DLCO 45% predicted
- Long-standing joint pain in hands "OA by PCP"
 - Mild tenderness with minimal swelling several PIPs and MCPs
 - Morning stiffness ~20 minutes
- RF 98, CCP >200

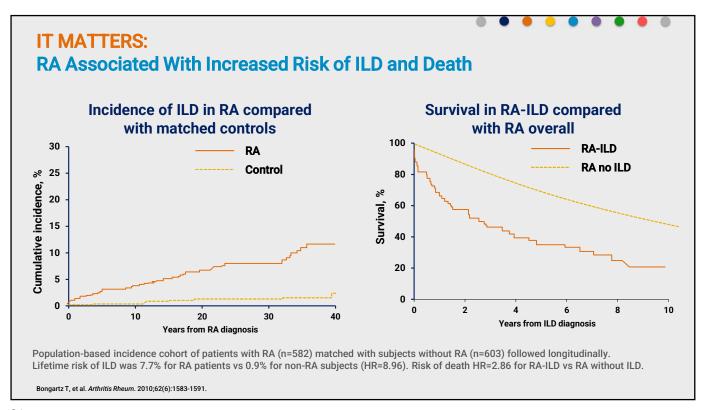
RA-UIP vs IPF: Demographics

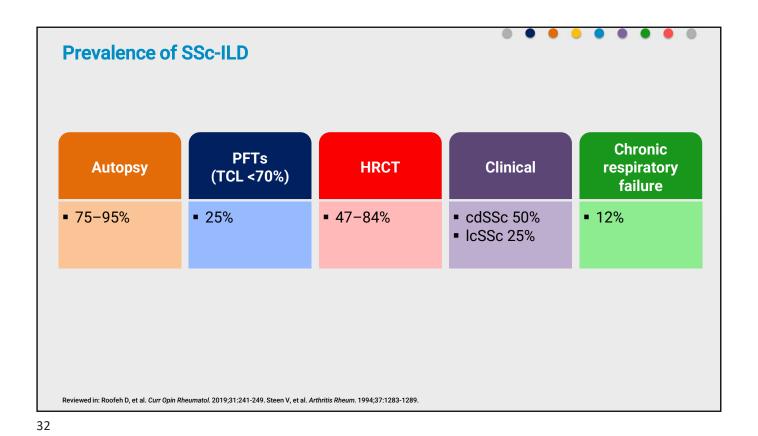
	RA-UIP	IPF
Gender	Males> Females	Males> >Females
Age	>60	>60
Risk factors	Smoking	Smoking
Race	Caucasians	Caucasians
Prevalence	5% of RA patients	15-20/100,000

28

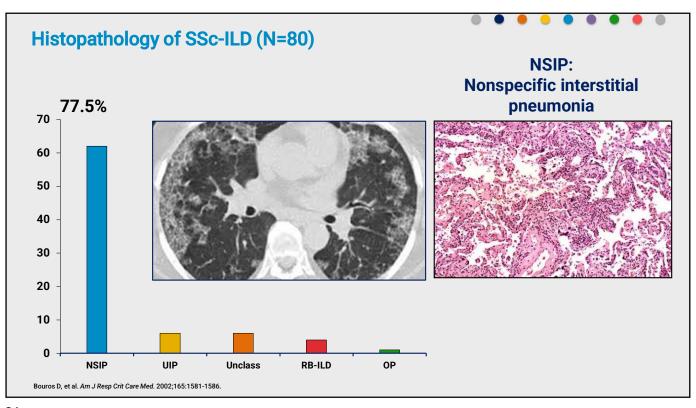
RA-UIP vs IPF: Histology

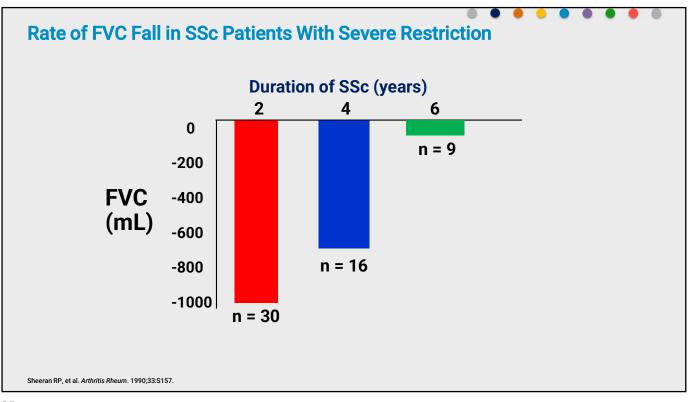
Characteristic	RA-UIP	IPF
Microscopic honeycombing	Present	Present
Temporal heterogeneity	Present	Present
Spatial heterogeneity	Present	Present
Fibroblastic foci	Some	Many
Lymphoid aggregates	Common	Uncommon
Interstitial inflammation	Present	Minimal
Pleural fibrosis	Common	Uncommon
Distribution of fibrosis	Airway centered	Subpleural




RA-UIP vs IPF: Pathobiology

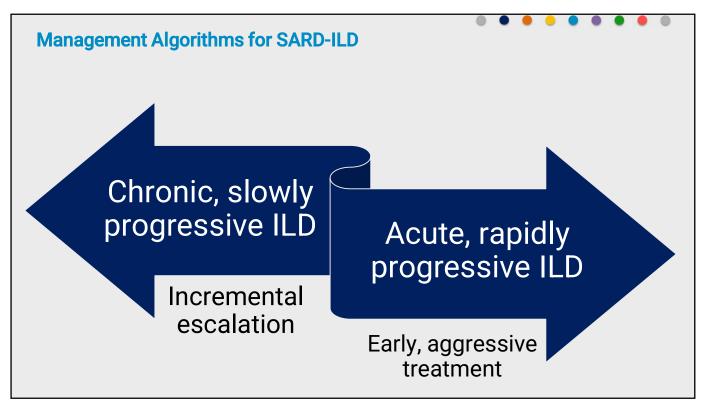
Mechanism of disease	RA-UIP	IPF
Autophagy	Upregulated→CCP	Upregulated
Mitophagy	Dysregulated	Dysregulated
Telomere length	Short	Short
MUC5B association	Present	Present
TERT, RTEL1, PARN, and SFTPC association	Present	Present


Cryobiopsy and genomic classifier cannot distinguish between IPF and other forms of UIP

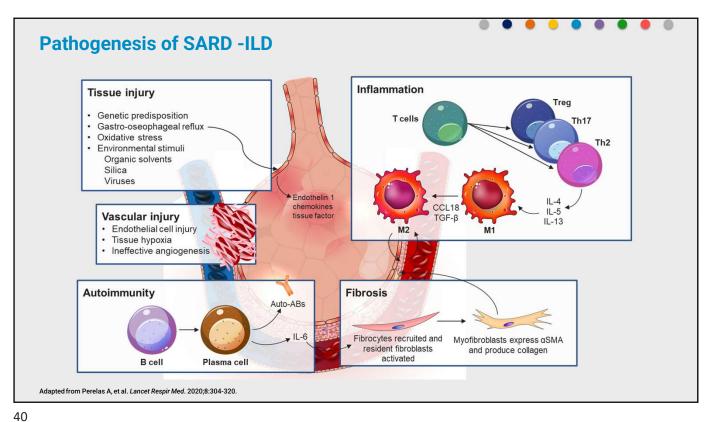

30

Long-Term Mortality in SSc-ILD Survival: ~80% at 5 years, 100 ~65% at 10 years, 80 Fraction alive <50% at 15 years **Characteristics at SSc-ILD diagnosis** Age, mean (SD) 54.5 (13.2) Male, % 16% 20 FVC % predicted, mean (SD) 81 (20) DLCO % predicted, mean (SD) 59 (20) 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (years) Ryerson CJ, et al. Chest. 2015.;148:1268-1275.

Risk Factors for SSc-ILD Progression

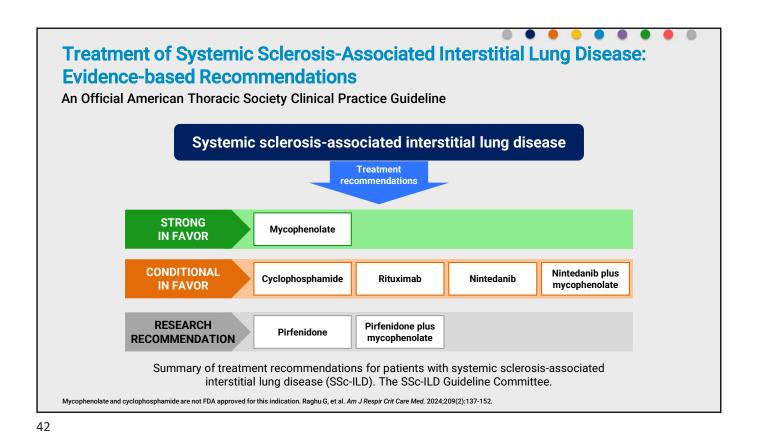

- African American race
- Male sex
- Genetic polymorphisms
- Diffuse cutaneous scleroderma variant
- Nailfold capillary abnormalities
- Digital ulcers
- Early disease
- Pulmonary hypertension
- Primary cardiac dysfunction

- Anti-topoisomerase I
- ANCA
- Anticardiolipin
- Anti-Ro52
- Anti-NOR90
- Anti-U11/U12
- Anti-Th/To
- Anti-polymyositis-scleroderma


Perelas A, et al. Lancet Respir Med. 2020;8(3):304-320.

36

Video Case Part 2: Early Detection and Next Steps in ILD Care https://youtu.be/ML4Gh9vsho4




+0

Treatment Approaches for SARD-ILD: Caveats

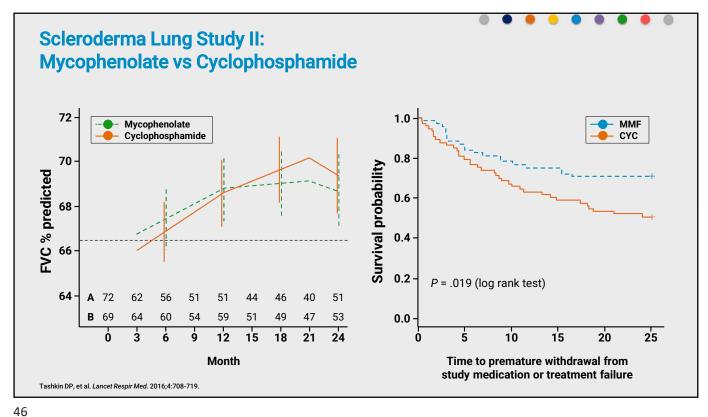
- Other than in scleroderma, well-powered clinical trials are lacking in this field
- Results appear to be etiology-specific and not translatable across SARDs
- Extrapolating results from IPF to SARD-ILD is not advisable
- Clinical trials are ongoing and need patients

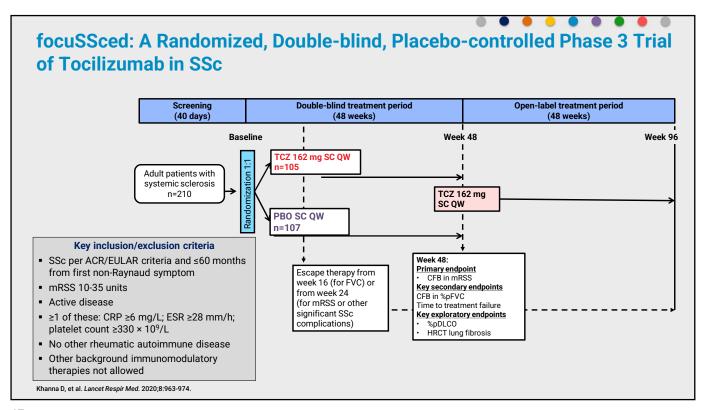
SLS I: Oral Cyclophosphamide vs Placebo FVC: 2.5% Cyclophosphamide Placebo FVC at 12 mo (% of predicted value) Cyclophosphamide 100 **DLCO: 1%** 49.3% had 26.4% had Change from baseline in FVC 90 improvement improvement HAQ: 0.16 units 80 +10 Mahler: 2.9 units 70 mRSS: 3.6 units +5 60 50 0 -5 30 20 --10 10 -15 50.7% had 73.6% had 0 worsening 3 0 2 Maximal fibrosis score at baseline 25 20 15 10 10 15 20 25 5 Frequency (%) Cyclophosphamide is not FDA approved for this indication Tashkin DP, et al. N Engl J Med. 2006;354:25.

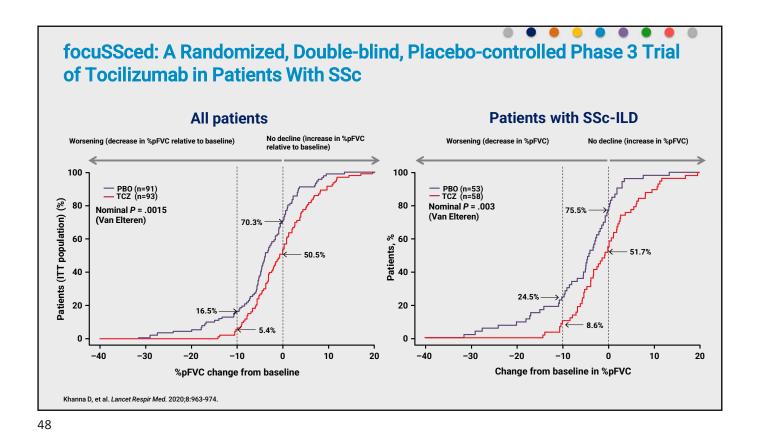
Scleroderma Lung Study II:
Mycophenolate vs Cyclophosphamide

Cyclophosphamide 2mg/kg/d

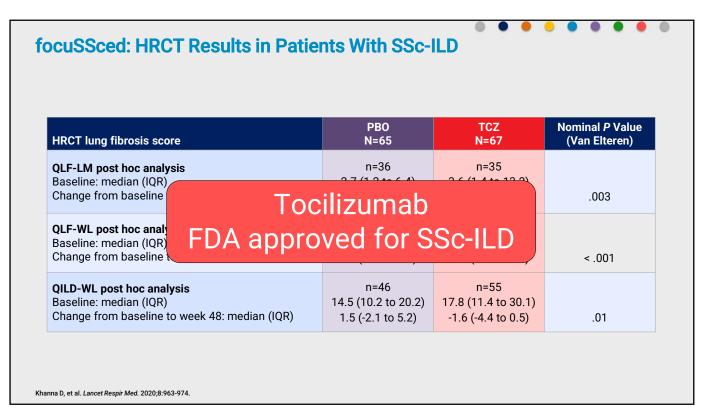
Placebo

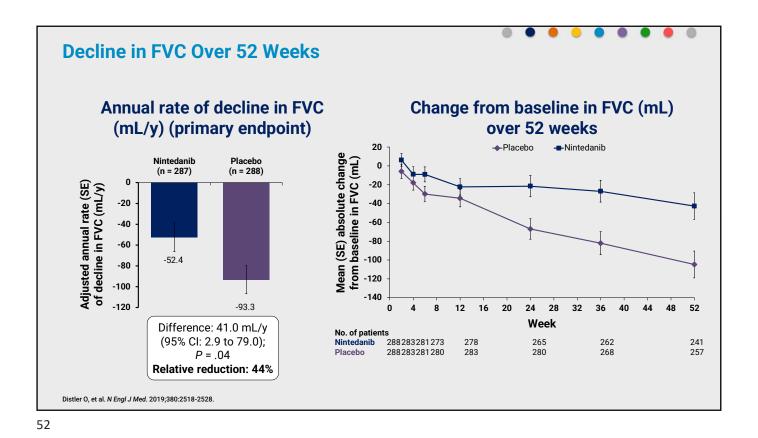

Mycophenolate 1.5 g BID

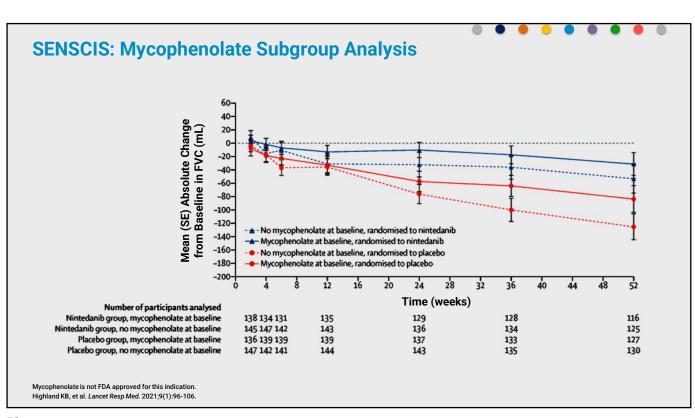

Year 1

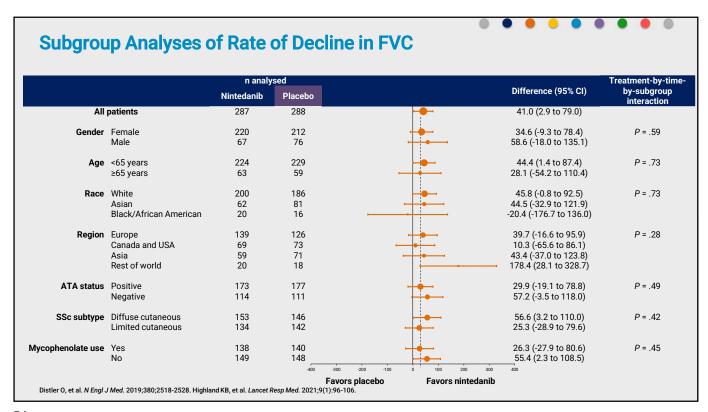

Year 2

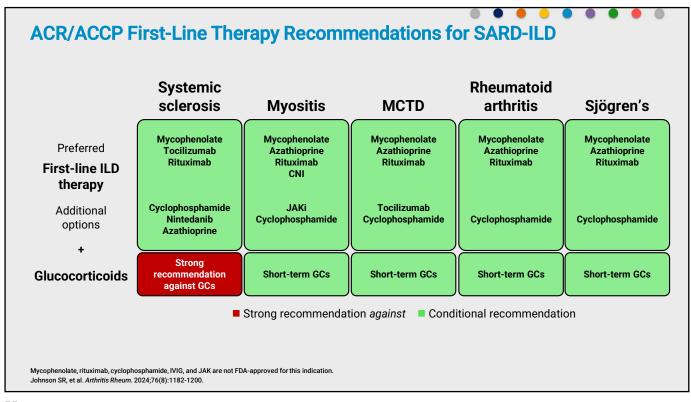
Primary outcome: % predicted FVC
Secondary outcomes: TLC, DLCO, TDI, HRQoL

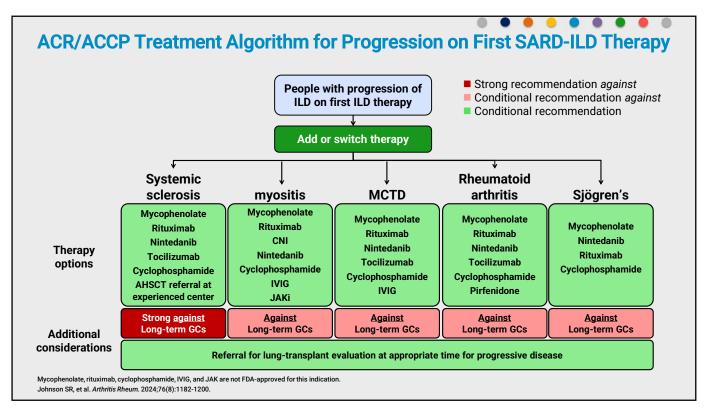

Tashkin DP, et al. Lancet Respir Med 2016;4:708-719.

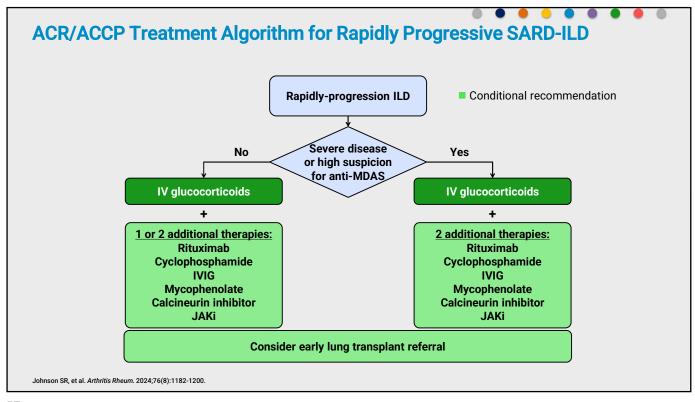


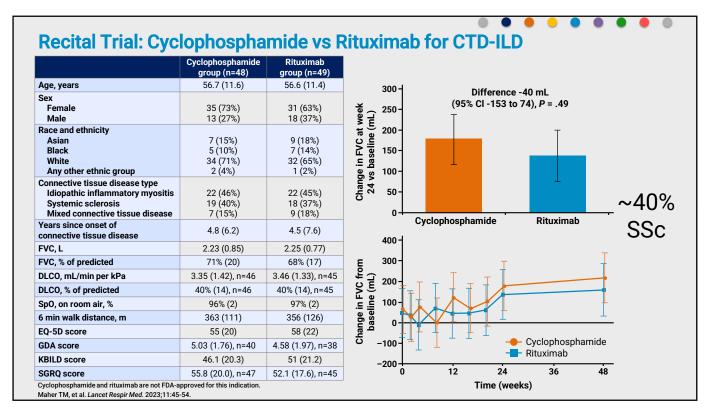


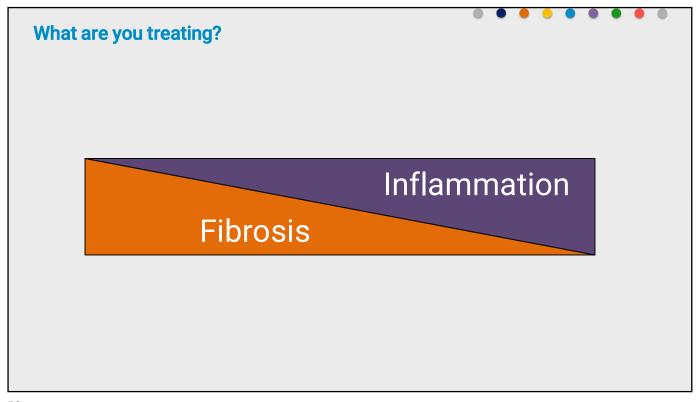

Key Secondary Endpoint: Clinically Meaningful Difference in Change From Baseline in %pFVC at Week 48 All patients Patients with SSc-ILD Change from baseline in %pFVC (ITT population), LSM (95%CI) 1 -Change from baseline in %pFVC (ITT population), LSM (95% CI) 0 -0 -1 -2 -3 -5 -6 -7 TC7 - PBO --- PBO - TC7 -8 24 Week 36 16 48 16 24 36 48 Week Difference (95% CI) nominal P Value Difference (95% CI) N=106 N=104 nominal P Value N=63 4.2 (2.0 to 6.4) 6.4 (3.3 to 9.4) %pFVC change from %pFVC change from -4.6 -0.4 -6.5 -0.1 baseline at week 48 P = .0002baseline at week 48 P < .0001 167 (83 to 250) P = .0001 Absolute change in Absolute change in 238 (119 to 357) -24 -257 FVC, mL FVC, mL $\vec{P} = .0001$ Khanna D. et al. Lancet Respir Med. 2020;8:963-974.

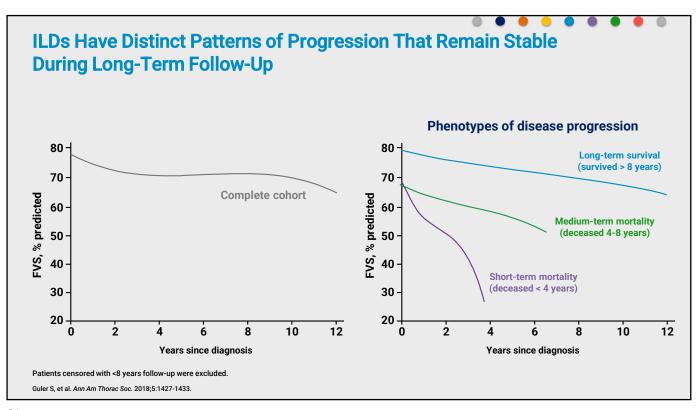










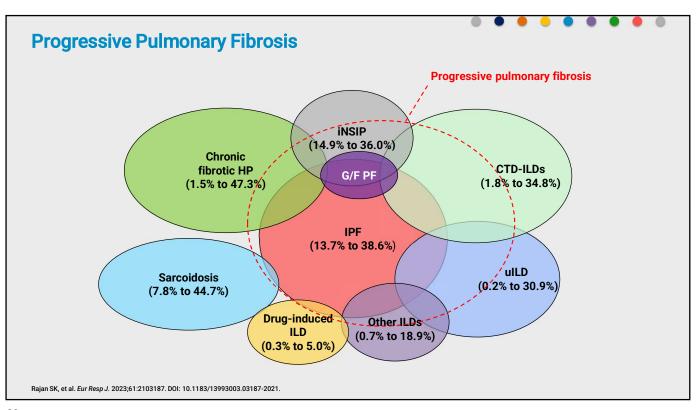

Audience Response Question

True or false: ILDs generally have patterns of progression that are highly variable during long-term follow-up.

- 1. True
- 2. False

IPF = idiopathic pulmonary fibrosis.

60

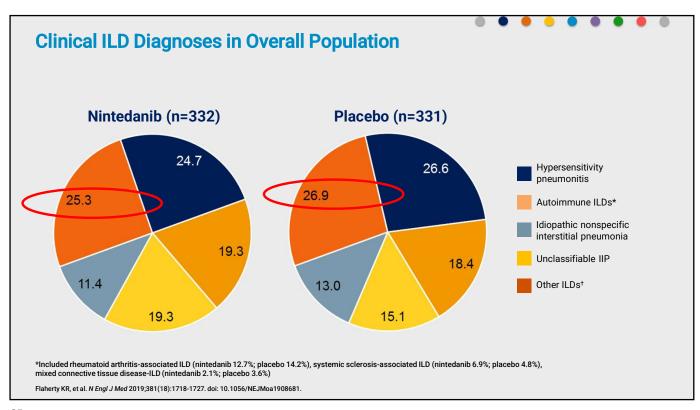


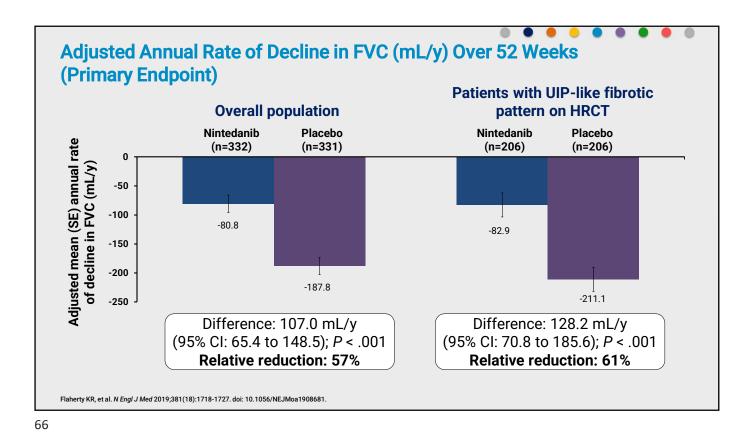
Criteria for Progressive Pulmonary Fibrosis

The three diagnostic criteria of PPF			
Domain	5-year	1-year	2-year
Symptoms	Worsening respiratory symptoms	Worsening respiratory symptoms	Worsening respiratory symptoms
Pulmonary function	An absolute decline in FVC% over 5%	An absolute decline in predicted FVC% over 5% or an absolute decline in DLCO% of 10%	An absolute decline in predicted FVC% over 10%, or an absolute decline in predicted FVC% of 5% to 10%
Radiology	_	Increased fibrosis on HRCT	Increased fibrosis on HRCT

Chen T, et al. J Thorac Dis. 2024;16(2):1034-1043.

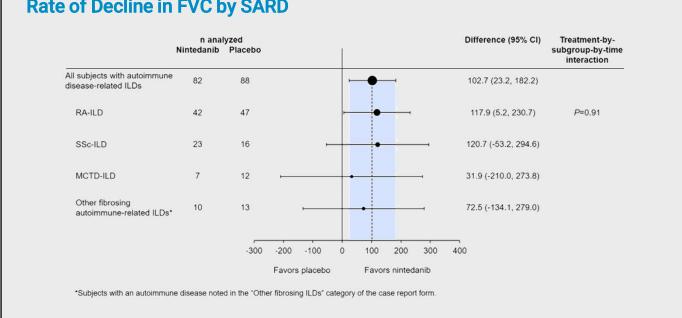
62

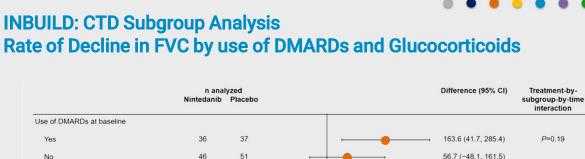

ORIGINAL ARTICLE


Nintedanib in Progressive Fibrosing Interstitial Lung Diseases

K.R. Flaherty, A.U. Wells, V. Cottin, A. Devaraj, S.L.F. Walsh, Y. Inoue, L. Richeldi, M. Kolb, K. Tetzlaff, S. Stowasser, C. Coeck, E. Clerisme-Beaty, B. Rosenstock, M. Quaresma, T. Haeufel, R.-G. Goeldner, R. Schlenker-Herceg, and K.K. Brown, for the INBUILD Trial Investigators*

Flaherty KR, et al. N Engl J Med 2019;381(18):1718-1727. doi: 10.1056/NEJMoa1908681.

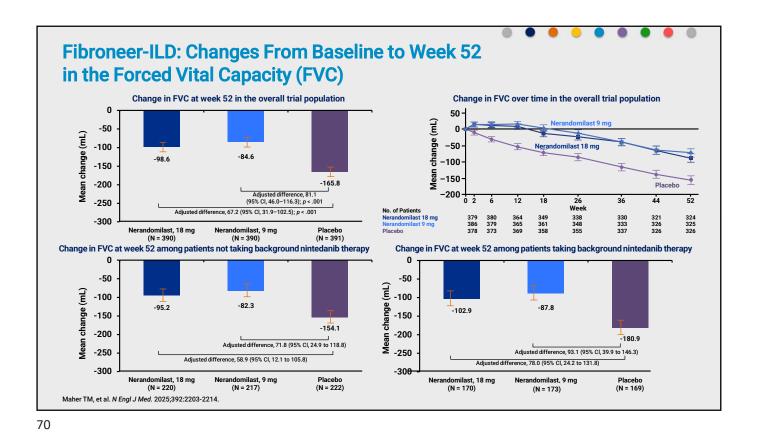

64



INBUILD: CTD Subgroup Analysis
Rate of Decline in FVC by SARD

Matteson EL, et al. Arthritis Rheumatol. 2022;74(6):1039-1047. DOI 10.1002/art.42075

51 56.7 (-48.1, 161.5) P=0.12 Use of glucocorticoids at baseline 149.3 (52.4, 246.1) Yes 57 58 15.6 (-122.7, 153.8) 25 30 No Use of DMARDs and/or glucocorticoids at baseline P=0.23 130.4 (39.4, 221.5) Yes 67 18 17.3 (-146.8, 181.3) 21 No -100 200 300 Favors placebo Favors nintedanib Matteson EL, et al. Arthritis Rheumatol. 2022;74(6):1039-1047. DOI 10.1002/art.42075.


68

Fibroneer-ILD

- Nerandomilast
 - Phosphodiesterase4B (PDE4B)inhibitor
 - Anti-inflammatory and anti-fibrotic effects
- N=1,176
- 44 countries
- Progressive pulmonary fibrosis

Characteristics of the patients at baseline Characteristic	Nerandomilast 18 mg	Nerandomilast 9 mg (N=393)	Placebo (N=392)
Male sex — no. (%)	(N=391) 220 (56.3)	203 (51.7)	231 (58.9)
Age-y	66.0±9.8	66.5±9.8	66.6±10.3
Weight — kg	73.2±17.1	72.1±17.5	73.4±17.9
Smoking status — no. (%) Never smoked Former smoker Current smoker	191 (48.8) 189 (48.3) 11 (2.8)	200 (50.9) 186 (47.3) 7 (1.8)	186 (47.4) 200 (51.0) 6 (1.5)
Time since diagnosis of ILD — y FVC Mean value — mL Percentage of predicted value	4.6±4.8 2,381±723 70.4±15.5	4.1±4.3 2,326±768 70.3±15.7	3.9±3.6 2,354±766 69.7±16.2
Percentage of predicted DLCO	49.4±17.5	48.7±16.8	49.7±16.5
Background nintedanib therapy — no. (%)	171 (43.7)	173 (44.0)	170 (43.4)
UIP or UIP-like fibrotic pattern on high-resolution CT — no. (%)	275 (70.3)	290 (73.8)	275 (70.2)
ILD diagnosis			
Autoimmune ILD	113 (28.9)	112 (28.5)	100 (25.5)
Hypersensitivity pneumonitis Unclassifiable idiopathic interstitial pneumonia Idiopathic nonspecific interstitial pneumonia Other ILD	73 (18.7) 73 (18.7) 82 (21.0) 50 (12.8)	83 (21.1) 76 (19.3) 73 (18.6) 49 (12.5)	77 (19.6) 82 (20.9) 73 (18.6) 60 (15.3)
Supplemental oxygen therapy — no. (%)	117 (29.9)	97 (24.7)	110 (28.1)

Maher TM, et al. N Engl J Med. 2025;392:2203-2214.

Fibroneer-ILD: Key Secondary Endpoints Analyses of key secondary endpoint and related secondary endpoints up to first database lock Hazard ratio (95% CI) **Endpoint** Nerandomilast Placebo P Value no. with event/no. of patients Key secondary endpoint Nerandomilast 18 mg 95/391 122/392 0.77 (0.59 to 1.01) .06 Nerandomilast 9 mg 110/393 0.88 (0.68 to 1.14) 122/392 .34 Acute exacerbation of ILD or death Nerandomilast 18 mg 48/391 83/392 0.59 (0.41 to 0.84) Nerandomilast, 9 mg 65/393 83/392 0.78 (0.56 to 1.08) Hospitalization for respiratory cause or death Nerandomilast 18 mg 110/392 0.75 (0.56 to 1.00) 84/391 Nerandomilast 9 mg 97/393 110/392 0.83 (0.63 to 1.10) Death Nerandomilast 18 mg 24/391 50/392 0.48 (0.30 to 0.79) Nerandomilast 9 mg 50/392 0.60 (0.38 to 0.95) 33/393 0.25 0.5 1.0 2.0 4.0 Nerandomilast better Placebo better Maher TM, et al. N Engl J Med, 2025;392;2203-2214.

Coming Soon to a Site Near You: Fibroneer-SARD

RMD Open
Rheumatic & Musculoskeletal Diseases

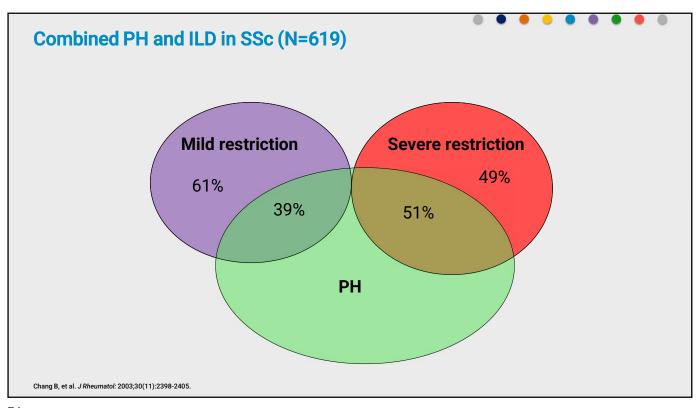
Visit this Journal

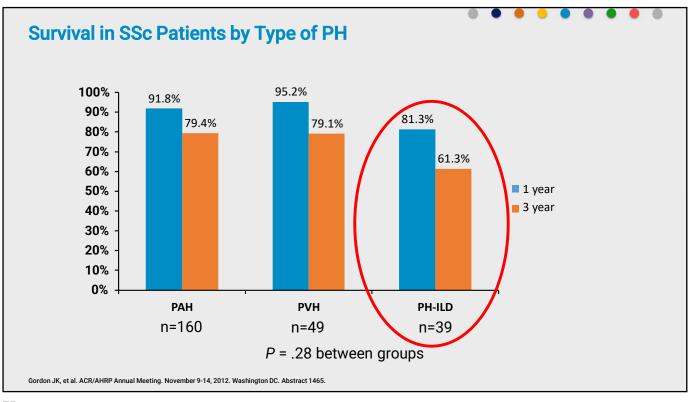
BM

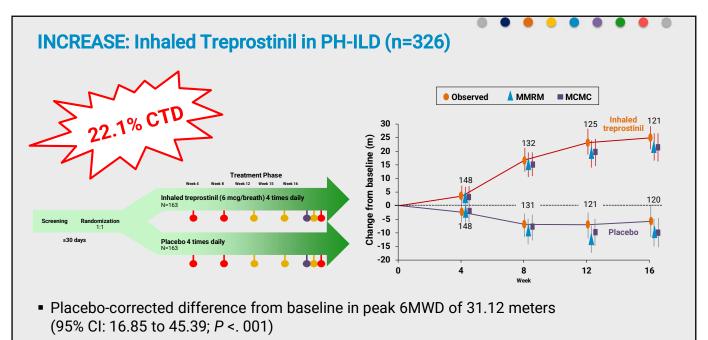
▶ RMD Open. 2024 Dec 23;10(4):e004704. doi: <u>10.1136/rmdopen-2024-004704</u> [2]

Rationale for phosphodiesterase-4 inhibition as a treatment strategy for interstitial lung diseases associated with rheumatic diseases

Martin Aringer ^{1,∞}, Oliver Distler ², Anna-Maria Hoffmann-Vold ^{2,3}, Masataka Kuwana ⁴, Helmut Prosch ⁵, Elizabeth R Volkmann ⁶


▶ Author information ▶ Article notes ▶ Copyright and License information


PMCID: PMC11683935 PMID: 39719300


72

Case 3

- 58-year-old woman with diffuse cutaneous systemic sclerosis x 10 years
- ILD diagnosed 8 years ago; on MMF and nintedanib
- Worsening dyspnea on exertion
- HRCT fibrotic NSIP pattern
- FVC 52% predicted, DLCO 25% predicted, FVC/DLCO 2.08
- 6 MWD 265 m, O2 sat 83% predicted
- NT-pro BNP 193

- 42% reduction in nt-proBNP
- 39% reduction in time to clinical worsening

Waxman A, et al. N Engl J Med. 2021;384:325-334.

76

Safety Endpoint: FVC Inhaled treprostinil resulted in placebo-corrected difference in FVC of 28.47 mL and 44.40 mL at weeks 8 and 16, respectively Percent predicted FVC at week 8 (1.79%; P = .01) and week 16 (1.80%; P = .03) LSM difference: LSM difference: LSM difference: LSM difference: 28.5 (SE 30.1) 44.4 (SE 35.4) 1.8 (SE 0.7) 1.8 (SE 0.8) 50-95% CI: -30.8 to 87.7 95% CI: -25.2 to 114.0 95% CI: 0.4 to 3.2 95% CI: 0.2 to 3.4 40 P = .35P = .21P = .014P = .028LSM change from baseline in FVC % predicted (%) 3. LSM change from baseline in FVC (mL) 30 2 N=129 N=141 1 N=129 [⊥] N=141 0 N=124 N=140 \perp N=140 -2 N=124 Treatment group Treatment group -3 Inhaled treprostinil Inhaled treprostinil Placebo Placebo -70 16 16 8 8 Treatment week Treatment week Nathan SD. et al. N Engl J Med. 2021;9(11):1266-1274.

TETON-2 Pivotal Study of Inhaled Treprostinil Meets Primary Endpoint for the Treatment of Idiopathic Pulmonary Fibrosis

- Placebo corrected improvement in FVC by 95.6 mL (P < .0001) at week 52</p>
- Benefits seen across all subgroups
- Statistical improvements in most secondary endpoints
 - Time to first clinical worsening
 - Change in percent predicted FVC
 - Change in King's Brief Interstitial Lung Disease QOL Questionnaire (K-BILD)
 - Diffusion capacity
- Trend towards improvement in
 - Time to first acute exacerbation
 - Survival

Coming soon:


- Peer-reviewed publications
- Teton-1
- Teton-PPF

Teton-2 press release. https://ir.unither.com/~/media/Files/U/United-Therapeutics-IR/documents/press-releases/2025/teton-2-press-release.pdi

78

General Treatment Recommendations for SARD-ILD

- Treatment of comorbidities
 - GERD
 - Pulmonary hypertension
 - Depression
- Supplemental oxygen
- Pulmonary rehabilitation
- Smoking cessation
- Avoidance of environmental triggers
- Vaccinations
- Clinical trials
- Goals of care discussion

Saggar R, et al. Eur Respir J. 2010;36:893-900. Johnson SR, et al. Arthritis Rheumatol. 2024;76(8):1182-1200.

Conclusions

- Work-up for SARDs is an essential component of the evaluation of patients with suspected ILD
- Since interstitial lung disease is a leading cause of morbidity and mortality, clinicians caring for patients with SARDs should be alert for development of ILD
- Pathobiology involves the interplay of disordered fibrotic, immunologic and vascular pathways
- Treatment approaches vary by specific type of SARD and not all patients require treatment
- Fibrosis does not exclude development of pulmonary vasculopathy

80

Clinical Pearls for Rheumatologists: Diagnosing and Managing Fibrosing Interstitial Lung Diseases

Toolkit

Resource	Address
Alhamad EH. Clinical characteristics and survival in idiopathic pulmonary fibrosis and connective tissue disease-associated usual interstitial pneumonia. <i>J Thorac Dis</i> . 2015;7(3):386-393. doi:10.3978/j.issn.2072-1439.2014.12.40	https://jtd.amegroups.org/article/view/3979/4537
Antoniu SA. Key paper evaluation. Cyclophosphamide for scleroderma interstitial lung disease. Tashkin DP, Elashoff R, Clements PJ et al: Cyclophosphamide versus placebo in scleroderma lung disease. N Engl. J Med. (2006) 354(25):2655-2666. Expert Opin Investig Drugs. 2007;16(3):393-395. doi:10.1517/13543784.16.3.393	https://www.tandfonline.com/doi/full/10.1517/135437 84.16.3.393
Aringer M, Distler O, Hoffmann-Vold AM, et al. Rationale for phosphodiesterase-4 inhibition as a treatment strategy for interstitial lung diseases associated with rheumatic diseases. <i>RMD Open</i> . 2024;10(4):e004704. doi:10.1136/rmdopen-2024-004704	https://rmdopen.bmj.com/content/10/4/e004704
Barba T, Fort R, Cottin V, et al. Treatment of idiopathic inflammatory myositis associated interstitial lung disease: A systematic review and meta-analysis. <i>Autoimmun Rev.</i> 2019;18(2):113-122. doi:10.1016/j.autrev.2018.07.013	https://www.sciencedirect.com/science/article/abs/pii/ S1568997218302799?via%3Dihub
Bongartz T, Nannini C, Medina-Velasquez YF, et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: a population-based study. <i>Arthritis Rheum</i> . 2010;62(6):1583-1591. doi:10.1002/art.27405	https://onlinelibrary.wiley.com/doi/10.1002/art.27405
Bouros D, Wells AU, Nicholson AG, et al. Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome. <i>Am J Respir Crit Care Med</i> . 2002;165(12):1581-1586. doi:10.1164/rccm.2106012	https://www.atsjournals.org/doi/10.1164/rccm.210601 2

Resource	Address
Bryson T, Sundaram B, Khanna D, Kazerooni EA.	https://www.sciencedirect.com/science/article/abs/pii/
Connective tissue disease-associated interstitial	S0887217113001182?via%3Dihub
pneumonia and idiopathic interstitial pneumonia:	30007217113001102: VId /03DIIIUD
similarity and difference. Semin Ultrasound CT	
MR. 2014;35(1):29-38.	
doi:10.1053/j.sult.2013.10.010	
Castelino FV, Goldberg H, Dellaripa PF. The impact	https://academic.oup.com/rheumatology/article-
of rheumatological evaluation in the	abstract/50/3/489/1789190?redirectedFrom=fulltext&l
management of patients with interstitial lung	ogin=false
disease. <i>Rheumatology (Oxford)</i> . 2011;50(3):489-	<u>ogni-raise</u>
493. doi:10.1093/rheumatology/keq233	
Chang B, Wigley FM, White B, Wise RA.	https://www.jrheum.org/content/30/11/2398.long
Scleroderma patients with combined pulmonary	inteps.//www.jmeam.org/content/30/11/2336.iong
hypertension and interstitial lung disease. J	
Rheumatol. 2003;30(11):2398-2405.	
Chen T, Zeng C. Compare three diagnostic criteria	https://jtd.amegroups.org/article/view/83630/html
of progressive pulmonary fibrosis. <i>J Thorac Dis</i> .	neeps///teatamestroupsions/, arcticle/ view/ oboss/ricims
2024;16(2):1034-1043. doi:10.21037/jtd-23-481	
Chen Z, Wang X, Ye S. Tofacitinib in Amyopathic	https://www.nejm.org/doi/10.1056/NEJMc1900045
Dermatomyositis-Associated Interstitial Lung	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Disease. <i>N Engl J Med</i> . 2019;381(3):291-293.	
doi:10.1056/NEJMc1900045	
Distler O, Highland KB, Gahlemann M, et al.	https://www.nejm.org/doi/10.1056/NEJMoa1903076
Nintedanib for systemic sclerosis-associated	
interstitial lung disease. N Engl J Med.	
2019;380(26):2518-2528.	
doi:10.1056/NEJMoa1903076	
Flaherty KR, Wells AU, Cottin V, et al. Nintedanib	https://www.nejm.org/doi/10.1056/NEJMoa1908681
in progressive fibrosing interstitial lung	
diseases. N Engl J Med. 2019;381(18):1718-1727.	
doi:10.1056/NEJMoa1908681	
Fujisawa T, Hozumi H, Kamiya Y, et al.	https://onlinelibrary.wiley.com/doi/10.1111/resp.13978
Prednisolone and tacrolimus versus prednisolone	
and cyclosporin A to treat	
polymyositis/dermatomyositis-associated ILD: A	
randomized, open-label trial. Respirology.	
2021;26(4):370-377. doi:10.1111/resp.13978	
Goh NS, Desai SR, Veeraraghavan S, et al.	https://www.atsjournals.org/doi/10.1164/rccm.200706-
Interstitial lung disease in systemic sclerosis: a	<u>8770C</u>
simple staging system. Am J Respir Crit Care Med.	
2008;177(11):1248-1254.	
doi:10.1164/rccm.200706-877OC	

Resource	Address
Gordon JK, et al. ACR/AHRP Annual Meeting. Nov.	https://acrabstracts.org/meetings/2012-acrarhp-annual-
9-14, 2012. Washington DC. Abstract 1465.	meeting/
Guler SA, Winstone TA, Murphy D, et al. Does	https://www.atsjournals.org/doi/10.1513/AnnalsATS.20
Systemic sclerosis-associated interstitial lung	1806-362OC
disease burn out? Specific phenotypes of disease	
progression. Ann Am Thorac Soc.	
2018;15(12):1427-1433.	
doi:10.1513/AnnalsATS.201806-362OC	
Highland KB, Distler O, Kuwana M, et al. Efficacy	https://www.thelancet.com/journals/lanres/article/PIIS
and safety of nintedanib in patients with systemic	2213-2600(20)30330-1/abstract
sclerosis-associated interstitial lung disease	
treated with mycophenolate: a subgroup analysis	
of the SENSCIS trial. Lancet Respir Med.	
2021;9(1):96-106. doi:10.1016/S2213-	
2600(20)30330-1	
Johnson SR, Bernstein EJ, Bolster MB, et al. 2023	https://acrjournals.onlinelibrary.wiley.com/doi/10.1002
American College of Rheumatology	<u>/art.42860</u>
(ACR)/American College of Chest Physicians	
(CHEST) Guideline for the Screening and	
Monitoring of Interstitial Lung Disease in People	
with Systemic Autoimmune Rheumatic	
Diseases. Arthritis Rheumatol. 2024;76(8):1201-	
1213. doi:10.1002/art.42860	
Juge PA, Lee JS, Lau J, et al. Methotrexate and	https://publications.ersnet.org/content/erj/57/2/20003
rheumatoid arthritis-associated interstitial lung	<u>37</u>
disease. Eur Respir J. 2021;57(2):2000337.	
doi:10.1183/13993003.00337-2020	
Khanna D, Denton CP, Lin CJF, et al. Safety and	https://ard.eular.org/article/S0003-4967(24)00996-
efficacy of subcutaneous tocilizumab in systemic	<u>8/fulltext</u>
sclerosis: results from the open-label period of a	
phase II randomised controlled trial	
(faSScinate). Ann Rheum Dis. 2018;77(2):212-220.	
doi:10.1136/annrheumdis-2017-211682 Khanna D, Lin CJF, Furst DE, et al. Tocilizumab in	https://www.tholancot.com/journals/lancos/article/DUS
systemic sclerosis: a randomised, double-blind,	https://www.thelancet.com/journals/lanres/article/PIIS 2213-2600(20)30318-0/abstract
placebo-controlled, phase 3 trial. <i>Lancet Respir</i>	2213-2000(20/30310-0/ austract
Med. 2020;8(10):963-974. doi:10.1016/\$2213-	
2600(20)30318-0	
2000(20)30310-0	

Resource	Address
Khanna D, Spino C, Bernstein, et al. Combination	https://acrabstracts.org/abstract/combination-therapy-
therapy of mycophenolate mofetil and	of-mycophenolate-mofetil-and-pirfenidone-vs-
pirfenidone vs. mycophenolate alone: Results	mycophenolate-alone-results-from-the-scleroderma-
from the Scleroderma Lung Study III. ACR	lung-study-iii/
Convergence 2022. Abstract 0520.	
Kono M, Nakamura Y, Enomoto N, et al. Usual	https://journals.plos.org/plosone/article?id=10.1371/jo
interstitial pneumonia preceding collagen	<u>urnal.pone.0094775</u>
vascular disease: a retrospective case control	
study of patients initially diagnosed with	
idiopathic pulmonary fibrosis. PLoS One.	
2014;9(4):e94775.	
doi:10.1371/journal.pone.0094775	
Maher TM, Assassi S, Azuma A, et al.	https://www.nejm.org/doi/10.1056/NEJMoa2503643
Nerandomilast in patients with progressive	
pulmonary fibrosis. N Engl J Med.	
2025;392(22):2203-2214.	
doi:10.1056/NEJMoa2503643	
Maher TM, Tudor VA, Saunders P, et al. Rituximab	https://www.thelancet.com/journals/lanres/article/PIIS
versus intravenous cyclophosphamide in patients	2213-2600(22)00359-9/fulltext
with connective tissue disease-associated	
interstitial lung disease in the UK (RECITAL): a	
double-blind, double-dummy, randomised,	
controlled, phase 2b trial. Lancet Respir Med.	
2023;11(1):45-54. doi:10.1016/S2213- 2600(22)00359-9	
Martinez FJ, McCune WJ. Cyclophosphamide for	https://www.nejm.org/doi/abs/10.1056/NEJMe068095
scleroderma lung disease. <i>N Engl J Med</i> .	ittps://www.nejm.org/doi/abs/10.1050/NtJWe008055
2006;354(25):2707-2709.	
doi:10.1056/NEJMe068095	
Matteson EL, Kelly C, Distler JHW, et al.	https://acrjournals.onlinelibrary.wiley.com/doi/10.1002
Nintedanib in patients with autoimmune disease-	/art.42075
related progressive fibrosing interstitial lung	
diseases: Subgroup analysis of the INBUILD	
trial. Arthritis Rheumatol. 2022;74(6):1039-1047.	
doi:10.1002/art.42075	
Park JH, Kim DS, Park IN, et al. Prognosis of	https://www.atsjournals.org/doi/10.1164/rccm.200607-
fibrotic interstitial pneumonia: idiopathic versus	912OC
collagen vascular disease-related subtypes. Am J	
Respir Crit Care Med. 2007;175(7):705-711.	
doi:10.1164/rccm.200607-912OC	

Resource	Address
Patterson KC, Shah RJ, Porteous MK, et al.	https://journal.chestnet.org/article/S0012-
Interstitial lung disease in the elderly. <i>Chest</i> .	3692(16)62347-4/abstract
2017;151(4):838-844.	
doi:10.1016/j.chest.2016.11.003	
Perelas A, Silver RM, Arrossi AV, Highland KB.	https://www.thelancet.com/journals/lanres/article/PIIS
Systemic sclerosis-associated interstitial lung	2213-2600(19)30480-1/abstract
disease. Lancet Respir Med. 2020;8(3):304-320.	
doi:10.1016/S2213-2600(19)30480-1	
Raghu G, Montesi SB, Silver RM, et al. Treatment	https://www.atsjournals.org/doi/10.1164/rccm.202306-
of Systemic Sclerosis-associated Interstitial Lung	<u>1113ST</u>
Disease: Evidence-based Recommendations. An	
Official American Thoracic Society Clinical Practice	
Guideline. Am J Respir Crit Care Med.	
2024;209(2):137-152. doi:10.1164/rccm.202306-	
1113ST	
Rajan SK, Cottin V, Dhar R, et al. Progressive	https://publications.ersnet.org/content/erj/61/3/21031
pulmonary fibrosis: an expert group consensus	<u>87</u>
statement. Eur Respir J. 2023;61(3):2103187.	
Published 2023 Mar 30.	
doi:10.1183/13993003.03187-2021	
Roofeh D, Jaafar S, Vummidi D, Khanna D.	https://journals.lww.com/co-
Management of systemic sclerosis-associated	rheumatology/abstract/2019/05000/management of s
interstitial lung disease. Curr Opin Rheumatol.	<u>ystemic sclerosis associated.5.aspx</u>
2019;31(3):241-249.	
doi:10.1097/BOR.00000000000592	
Ryerson CJ, O'Connor D, Dunne JV, et al.	https://journal.chestnet.org/article/S0012-
Predicting mortality in systemic sclerosis-	3692(15)50238-9/abstract
associated interstitial lung disease using risk	
prediction models derived from idiopathic	
pulmonary fibrosis. <i>Chest</i> . 2015;148(5):1268-	
1275. doi:10.1378/chest.15-0003	
Saggar R, Khanna D, Furst DE, et al. Systemic	https://publications.ersnet.org/content/erj/36/4/893
sclerosis and bilateral lung transplantation: a	
single centre experience. Eur Respir J.	
2010;36(4):893-900.	
doi:10.1183/09031936.00139809	

Description	0 d duana
Resource	Address
Solomon JJ, Danoff SK, Woodhead FA, et al.	https://www.thelancet.com/journals/lanres/article/PIIS
Safety, tolerability, and efficacy of pirfenidone in	2213-2600(22)00260-0/abstract
patients with rheumatoid arthritis-associated	
interstitial lung disease: a randomised, double-	
blind, placebo-controlled, phase 2 study. Lancet	
Respir Med. 2023;11(1):87-96.	
doi:10.1016/S2213-2600(22)00260-0	
Steen VD, Conte C, Owens GR, Medsger TA Jr.	https://onlinelibrary.wiley.com/doi/10.1002/art.178037
Severe restrictive lung disease in systemic	<u>0903</u>
sclerosis. Arthritis Rheum. 1994;37(9):1283-1289.	
doi:10.1002/art.1780370903	
Suliman YA, Dobrota R, Huscher D, et al. Brief	https://acrjournals.onlinelibrary.wiley.com/doi/10.1002
report: pulmonary function tests: high rate of	<u>/art.39405</u>
false-negative results in the early detection and	
screening of scleroderma-related interstitial lung	
disease. Arthritis Rheumatol. 2015;67(12):3256-	
3261. doi:10.1002/art.39405	
Tashkin DP, Roth MD, Clements PJ, et al.	https://www.thelancet.com/journals/lanres/article/PIIS
Mycophenolate mofetil versus oral	2213-2600(16)30152-7/abstract
cyclophosphamide in scleroderma-related	
interstitial lung disease (SLS II): a randomised	
controlled, double-blind, parallel group	
trial. Lancet Respir Med. 2016;4(9):708-719.	
doi:10.1016/S2213-2600(16)30152-7	
United Therapeutics Corporation. United	https://ir.unither.com/~/media/Files/U/United-
Therapeutics Corporation announces TETON-2	<u>Therapeutics-IR/documents/press-releases/2025/teton-</u>
pivotal study of Tyvaso® meets primary endpoint	<u>2-press-release.pdf</u>
for the treatment of idiopathic pulmonary	
fibrosis. Published September 2, 2025.	
Wallace B, Vummidi D, Khanna D. Management of	https://journals.lww.com/co-
connective tissue diseases associated interstitial	rheumatology/abstract/2016/05000/management of c
lung disease: a review of the published	onnective tissue diseases.7.aspx
literature. Curr Opin Rheumatol. 2016;28(3):236-	
245. doi:10.1097/BOR.0000000000000270	
Waxman A, Restrepo-Jaramillo R, Thenappan T, et	https://www.nejm.org/doi/10.1056/NEJMoa2008470
al. Inhaled treprostinil in pulmonary hypertension	
due to interstitial lung disease. N Engl J Med.	
2021;384(4):325-334.	
doi:10.1056/NEJMoa2008470	
Ziff M. The rheumatoid nodule. Arthritis Rheum.	https://onlinelibrary.wiley.com/doi/10.1002/art.178033
1990;33(6):761-767. doi:10.1002/t.1780330601	0601
	I and the second se