Updates in the Management of Urothelial Carcinoma: Ensuring Optimal Management of Locally Advanced and Metastatic Disease

Matthew D. Galsky, MD FASCO
Professor of Medicine
Icahn School of Medicine at Mount Sinai
Director, Genitourinary Medical Oncology
Associate Director, Translational Research
Tisch Cancer Institute
New York, New York

Disclosures

• Dr. Galsky discloses receiving consulting fees from Bristol Myers Squibb, Merck, Genentech, AstraZeneca, Pfizer, EMD Serono, SeaGen Inc., Janssen, Numab Therapeutics, Dragonfly Therapeutics, GlaxoSmithKline, Basilea, UroGen Pharms, and Rappta Therapeutics.

• During the course of this lecture, the presenter may discuss the use of medications for both FDA-approved and non-approved indications.

• All relevant financial relationships have been mitigated

This activity is supported by an educational grant from Seagen Inc.
Learning Objectives

• Explain the latest therapeutic developments in the management of locally advanced and metastatic urothelial carcinoma in consideration of patient specific factors

• Assess current clinical efficacy and safety data concerning the use of treatments in the management of urothelial carcinoma, both in frontline and later-line settings

• Relate current best practices in potential adverse event monitoring and management strategies in urothelial carcinoma

Bladder Cancer

United States

• An estimated 83,190 people will be diagnosed with urinary bladder cancer, and 16,840 people will die from this disease in 2024

Worldwide (2020 data)

• Bladder cancer is the 10th most common malignancy, with 600,000 new cases annually

• More than 200,000 people die each year from this disease
Evolution of Bladder Cancer Management

- Atezolizumab
- Durvalumab
- Nivolumab
- Pembrolizumab
- Avelumab
- Enfortumab-vedotin
- Sacituzumab-govitecan

BC = bladder cancer; BCG = Bacillus Calmette-Guerin; ICI = immune checkpoint inhibitor; MIBC = muscle-invasive BC; mUC = metastatic UC; NMIBC = nonmuscle-invasive BC; UC = urinary cancer.

- Granted accelerated approval (May)
 - Avelumab
 - Durvalumab
- 1st line mUC, platinum-ineligible and 2nd line mUC (May, accelerated approval)
 - Pembrolizumab
- Granted accelerated approval (May)
 - Durvalumab

Locally advanced UC ineligible for cisplatin (May)
- Atezolizumab
- Atezolizumab (April)
- 2nd line mUC (February)
- Pembrolizumab

Locally advanced or mUC with previous ICI and platinum or cisplatin-ineligible (July)
- Enfortumab-vedotin

A salvage for BCG-unresponsive, high-risk NMIBC (January)
- Pembrolizumab

Maintenance, mUC (June)
- Avelumab

Adjuvant, MIBC (August)
- Nivolumab

Locally advanced or mMUC who received prior platinum and either ICIs (April)
- Pembrolizumab
- Sacituzumab-govitecan

Core Structure of an Antibody-Drug Conjugate

- Recognition of target cancer cells
- Guidance system for cytotoxic drugs
- Bridge between antibody and drugs to control release of drugs inside cancer cells
- Warhead for killing cancer cells

Promise of ADCs: Improve Therapeutic Index of Systemic Chemotherapy

Most patients receive chemotherapy; however, significant toxicities remain

Optimized ADC technology and biology must align to build successful ADC

ADCs to replace chemotherapy
- Targeted delivery to cancer cell
- Improved efficacy
- Decreased toxicity
- Increased therapeutic index

ADC = antibody-drug conjugate; ADCC = antibody-dependent cell-mediated cytotoxicity.

Enfortumab Vedotin (EV): Structure and MOA

Nectin-4 transmembrane protein highly expressed in bladder cancer

- EV is an anti-nectin-4 ADC
- Nectin-4 is a tumor-associated transmembrane protein highly expressed in bladder cancer

- EV properties
 - Drug-to-antibody ratio of 4:1
 - Monomethyl auristatin E payload
 - May exert bystander effect (preclinical support)

IgG = immunoglobulin G; mAB = monoclonal antibody; MMAE = monomethyl auristatin E; MOA = mechanism of action.

Sacituzumab Govitecan (SG): Structure and MOA

SG is an anti-Trop-2 ADC with:
• High drug-to-antibody ratio (8:1)
• Topoisomerase inhibitor payload (SN-38)
• Ability to exert bystander effect

Linker for SN-38
• Hydrolyzable linker for payload release
• High drug-to-antibody ratio (7.6:1)

SN-38 payload
• SN-38 more potent than parent compound, irinotecan

Humanized anti-Trop-2 antibody
• Directed toward Trop-2, an epithelial antigen expressed on many solid cancers

SG = trophoblast cell-surface antigen.

Humanized anti-Trop-2 antibody

NCCN Guidelines Version 4.2024
First-Line Systemic Therapy for Locally Advanced or Metastatic UC

<table>
<thead>
<tr>
<th>Preferred</th>
<th>Cisplatin eligible (LOR)</th>
<th>Cisplatin ineligible (LOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pembrolizumab + enfortumab vedotin (category 1)</td>
<td>Pembrolizumab + enfortumab vedotin (1)</td>
</tr>
<tr>
<td>Other recommended</td>
<td>Gemcitabine + cisplatin (1) → avelumab* (1)</td>
<td>Gemcitabine + carboplatin → avelumab* (1)</td>
</tr>
<tr>
<td>regimen</td>
<td>Nivolumab, gemcitabine, cisplatin (1) → nivolumab (1)</td>
<td></td>
</tr>
<tr>
<td>Useful in</td>
<td>DDMVC with GFS (1) → avelumab* (1)</td>
<td>Gemcitabine ± paclitaxel (2a)</td>
</tr>
<tr>
<td>certain</td>
<td></td>
<td>Ifosfamide + doxorubicin + gemcitabine* (2a)</td>
</tr>
<tr>
<td>circumstances</td>
<td></td>
<td>Pembrolizumab (2a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atezolizumab‖ (2b)</td>
</tr>
</tbody>
</table>

• Presence of both non-nodal metastases and ECOG PS ≥2 strongly predict poor outcome with CT; patients without these adverse prognostic factors have greatest benefit from CT; impact of these factors in relation to ICI is not fully defined, but they remain poor prognostic indicators in general
• For most patients, risks of adding paclitaxel to gemcitabine and cisplatin outweigh limited benefit seen in randomized trial
• Substantial proportion of patients cannot receive cisplatin-based CT due to renal impairment or other comorbidities; participation in clinical trials of new or more tolerable therapy is recommended

* Maintenance therapy with avelumab only if there is no progression on first-line platinum-containing CT; †Patients with good kidney function and good PS; ‡Patients not eligible for any platinum-containing CT; §Patients whose tumors express PD-L1 or who are not eligible for any platinum-containing CT regardless of PD-L1 expression; ‖Atezolizumab: SP142 assay, PD-L1–stained tumor-infiltrating immune cells covering ≥5% of the tumor area.

CT = chemotherapy; DDMVC = dose-dense methotrexate, vinblastine, doxorubicin, cisplatin; ECOG = Eastern Cooperative Oncology Group performance status; GFS = growth-factor support; LOR = level or recommendation; PD-L1 = programmed (cell) death 1 ligand; PS = performance status.

Patient-Centered Communication in Shared Decision-Making

Patient participation is key in medical decision-making to optimize treatment outcomes

Shared decision-making can facilitate:
- ↑ patient satisfaction
- ↑ productive conversations
- ↓ anxiety
- ↑ improve patient-clinician relationships
- ↑ patient-reported outcomes following treatment decisions
- ↑ Improved disease-related understanding

Exchanging information
- Responding to emotions
- Making decisions
- Managing uncertainty
- Enabling patient self-management
- Fostering healthy relationships

Patient Communication

We look forward to seeing you at our TeleECHO presentation to discuss Updates in the Management of Urothelial Carcinoma: Ensuring Optimal Management of Locally Advanced and Metastatic Disease!