

Identifying Optimal Combinations of Immune-Based Therapies: METASTATIC NSCLC

Identifying Optimal Combinations of Immune-Based Therapies: Metastatic NSCLC

PROGRAM CHAIR

Jacob Sands, MD

Physician, Dana-Farber Cancer Institute Instructor of Medicine Harvard Medical School Boston, MA

FACULTY SPEAKERS

Narjust Duma, MD

Thoracic Oncologist

Dana-Farber Cancer Institute

Boston, MA

Matthew A. Gubens, MD, MS

Associate Professor Medical Director, Thoracic Medical Oncology University of California, San Francisco, CA

Rebecca Heist, MD, MPH

Massachusetts General Hospital Cancer Center Associate Professor of Medicine Boston, MA

Shayma Master Kazmi, MD, RPh

Medical Director of Thoracic Oncology Cancer Treatment Centers of America Comprehensive Care and Research Center Philadelphia, PA

Benjamin Philip Levy, MD

Associate Professor, Johns Hopkins School of Medicine Baltimore, MD

Aaron Lisberg, MD

Assistant Professor of Clinical Medicine University of California, Los Angeles Los Angeles, CA

Stephen V. Liu, MD

Associate Professor of Medicine
Director, Thoracic Oncology
Head, Developmental Therapeutics
Lombardi Comprehensive Cancer Center
Georgetown University
Washington, DC

Jonathan W. Reiss, MD, MS

Associate Professor
UC Davis Comprehensive Cancer Center
Sacramento, CA

Jared Weiss, MD

Associate Professor, School of Medicine Section Chief of Thoracic and Head/Neck Oncology UNC Lineberger Comprehensive Cancer Center Chapel Hill, NC

PROGRAM OVERVIEW

This program will review current and emerging immunotherapies for the management of patients with advanced NSCLC.

EDUCATIONAL AUDIENCE

This activity is designed to meet the educational needs of pulmonologists, thoracic surgeons, pathologists, medical oncologists, and advanced practitioners in oncology (NP/PA/PharmD) involved in the management of patients with advanced NSCLC.

EDUCATIONAL OBJECTIVES

Upon the completion of this program, attendees should be able to:

- Describe the anti-tumor effects of checkpoint inhibition on the pathogenesis of non-small cell lung cancer
- Apply the clinical trials data for immunotherapy regimens in advanced and metastatic NSCLC
- Examine the late stage, clinical trial data of emerging PD-1 inhibitors in the treatment of advanced nonsmall cell lung cancer

ACCREDITATION STATEMENT

Med Learning Group is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. This CME activity was planned and produced in accordance with the ACCME Essentials.

CREDIT DESIGNATION STATEMENT

Med Learning Group designates this live virtual activity for a maximum of 1.0 AMA Category 1 $Credit^{TM}$. Physicians should claim only the credit commensurate with the extent of their participation in the live virtual activity.

NURSING CREDIT INFORMATION

Purpose: This program would be beneficial for nurses involved in the care of patients with advanced NSCLC. Credits: 1.0 ANCC Contact Hour.

CNE Accreditation Statement: Ultimate Medical Academy/Complete Conference Management (CCM) is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. Awarded 1.0 contact hour of continuing nursing education of RNs and APNs.

DISCLOSURE POLICY STATEMENT

In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards for Commercial Support, educational programs sponsored by Med Learning Group must demonstrate balance, independence, objectivity, and scientific rigor. All faculty, authors, editors, staff, and planning committee members participating in an MLG-sponsored activity are required to disclose any relevant financial interest or other relationship with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services that are discussed in an educational activity.

DISCLOSURE OF CONFLICTS OF INTEREST

- **Dr. Sands** has received consulting fees from AstraZeneca, Medtronic, Daiichi Sankyo, Blueprint Medicines, Takeda, Jazz Pharmaceuticals, and Boehringer Ingelheim.
- **Dr. Duma** has received consulting fees from Pfizer, AstraZeneca, Bristol Myers Squibb, Neogenomics, Inivata, and Nexus.
- **Dr. Gubens** has received consulting fees from AstraZeneca and Sanofi; his institution is also contracted for research with Amgen, Celgene, JNJ, Merck, Novartis, OncoMed, Roche, and Trizell (he serves as the study PI).
- **Dr. Heist** has received consulting fees from Novartis, EMD Serono, and Daiichi Sankyo; her institution has also received research funds from Agios, AbbVie, Novartis, Daiichi Sankyo, Mirati, Turning Point, Corvus, and Lilly.
- **Dr. Kazmi** has received consulting fees from Bristol Myers Squibb, Merck, Lilly, and Takeda; she has served on the speakers' bureau for Merck, Lilly, Immunomedics, Jazz, Takeda, and Eisai. She holds stock in Merck, Lilly, and Neogenomics.
- *Dr. Levy* has received consulting fees from AstraZeneca, Pfizer, Novartis, Daiichi Sankyo, Bristol Myers Squibb, Janssen, Merck, Genentech, Eli Lilly, and Takeda.
- **Dr. Lisberg** has received consulting fees from AstraZeneca, Bristol Myers Squibb, Leica Biosystems, Jazz Pharmaceuticals, Novocure, Pfizer, MorphoSys, Eli Lilly and Company and Oncocyte; he has also been contracted for research grants with Daiichi Sankyo, Calithera Biosciences, AstraZeneca, Dracen Pharmaceuticals, and WindMIL. Dr. Lisberg's spouse is employed by Boston Scientific and has less than 5% equity from their employer.
- **Dr. Liu** has received consulting fees from Amgen, AstraZeneca, BeiGene, Blueprint, Bristol Myers Squibb, Daiichi Sankyo, G1 Therapeutics, Genentech, Guardant Health, Inivata, Janssen, Jazz Pharmaceuticals, Lilly, Merck, PharmaMar, Pfizer, Regeneron, and Takeda. His institution has been contracted for research with Alkermes, Bayer, Blueprint, Bristol Myers Squibb, Corvus, Debiopharm, Elevation Oncology, Genentech, Lilly, Merck, Merus, Pfizer, Rain Therapeutics, RAPT, and Turning Point Therapeutics (he serves as the study PI).
- **Dr. Reiss** has received consulting fees from Novartis, Boehringer Ingelheim, Blueprint, Daiichi Sankyo, and EMD Serono.

Dr. Weiss has received consulting fees from Genentech, AbbVie, Azitra, Jazz Pharmaceuticals, Boehringer, and Regeneron.

CME Content Review

The content of this activity was independently peer reviewed.

The reviewer of this activity has nothing to disclose.

CNE Content Review

The content of this activity was peer reviewed by a nurse reviewer.

The reviewer of this activity has nothing to disclose.

Staff Planners and Managers

The staff, planners, and managers reported the following financial relationships or relationships to products or devices they or their spouse/life partner have with commercial interests related to the content of this CME/CE activity:

Matthew Frese, MBA, General Manager of Med Learning Group, has nothing to disclose.

Christina Gallo, SVP, Educational Development for Med Learning Group, has nothing to disclose.

Debra Gordon, MS, Medical Director for Med Learning Group has nothing to disclose.

Lauren Welch, MA, VP, Accreditation and Outcomes for Med Learning Group, has nothing to disclose.

Jessica McMullen, MPH, Program Manager for Med Learning Group, has nothing to disclose.

Brianna Hanson, Accreditation and Outcomes Coordinator for Med Learning Group, has nothing to disclose.

DISCLOSURE OF UNLABELED USE

Med Learning Group requires that faculty participating in any CME activity disclose to the audience when discussing any unlabeled or investigational use of any commercial product or device not yet approved for use in the United States.

During this lecture, the faculty may mention the use of medications for both FDA-approved and non-approved indications.

METHOD OF PARTICIPATION

There are no fees for participating and receiving CME credit for this live virtual activity. To receive CME/CNE credit participants must:

- 1. Read the CME/CNE information and faculty disclosures.
- 2. Participate in the live virtual activity.
- 3. Complete the online post-test and evaluation.

You will receive your certificate as a downloadable file.

DISCLAIMER

Med Learning Group makes every effort to develop CME activities that are science based. This activity is designed for educational purposes. Participants have a responsibility to use this information to enhance their professional development in an effort to improve patient outcomes. Conclusions drawn by the participants should be derived from careful consideration of all available scientific information. The participant should use

his/her clinical judgment, knowledge, experience, and diagnostic decision making before applying any information, whether provided here or by others, for any professional use.

For CME questions, please contact Med Learning Group at info@medlearninggroup.com

Contact this CME provider at Med Learning Group for privacy and confidentiality policy statement information at http://medlearninggroup.com/privacy-policy/

AMERICANS WITH DISABILITIES ACT

Staff will be glad to assist you with any special needs. Please contact Med Learning Group prior to participating at info@medlearninggroup.com

Provided by Med Learning Group

This activity is co-provided by Ultimate Medical Academy/Complete Conference Management (CCM).

This activity is supported by an independent medical education grant from Regeneron Pharmaceuticals, Inc and Sanofi Genzyme.

Copyright ©2021 Med Learning Group. All rights reserved. These materials may be used for personal use only. Any rebroadcast, distribution, or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Med Learning Group is prohibited.

Program Agenda

I. Tumorigenesis Primer: Immune System Dysfunction in Non-Small-Cell Lung Cancer (NSCLC)

- a. Immune surveillance processes and tumor effects
 - i. T-cell activation, proliferation, and regulation
 - ii. Tumor immune evasion and tolerance
 - iii. Function of cytotoxic T-lymphocyte-associated protein 4, programmed cell death 1 (PD-1), and PD-1 ligand 1 (PD-L1) in T-cell regulation
 - iv. Whiteboard animation: depiction of the immune cellular functions and cytokine effects on tumorigenesis

II. Checkpoint Inhibitor Regimens in Treating Advanced/Metastatic NSCLC

- a. Currently available immuno-oncology treatment options
 - i. Nivolumab, ipilimumab, pembrolizumab, atezolizumab, and durvalumab
 - ii. Clinical trials overview: efficacy and safety for monotherapy and combination therapy with chemotherapy
 - iii. Whiteboard animation: depiction of the complementary antitumor effects of immunotherapy and chemotherapy in NSCLC
- b. Ongoing clinical trials

III. Application of Biomarkers to Immuno-oncology Treatment

- a. Association between PD-L1 expression and clinical outcomes
 - i. PD-L1 expression measures: tumor cells, tumor proportion score
 - ii. Appropriate cutoff values for PD-L1 levels: interpretation and application
 - iii. Standardization of laboratory methods for PD-L1 testing
- b. LKB1 mutations
- c. Tumor mutational burden: ready for prime time?
- d. Other potential biomarkers

IV. Conclusions

V. Questions and Answers

Identifying Optimal Combinations of Immune-Based Therapies: Metastatic NSCLC

Program Chair

Jacob Sands, MD

Physician, Dana-Farber Cancer Institute
Instructor of Medicine
Harvard Medical School
Boston, MA

Disclosures

- Please see Program Overview for specific speaker disclosure information
- During the course of this lecture, faculty may mention the use of medications for both FDA-approved and non-approved indications

This activity is supported by an independent medical education grant from Regeneron Pharmaceuticals, Inc and Sanofi Genzyme.

Accreditation

- Med Learning Group is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. This CME activity was planned and produced in accordance with the ACCME Essentials.
- Ultimate Medical Academy/Complete Conference
 Management (CCM) is accredited as a provider of continuing
 nursing education by the American Nurses Credentialing
 Center's Commission on Accreditation.
- This educational activity is applicable for CME and CNE credits.
 Please complete the necessary electronic evaluation to receive credit.

Learning Objectives

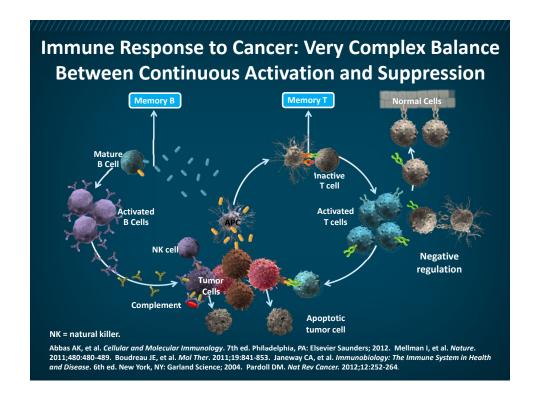
- Describe the antitumor effects of checkpoint inhibition on the pathogenesis of non-small-cell lung cancer
- Apply the clinical trials data for immunotherapy regimens in advanced and metastatic NSCLC
- Examine the late-stage clinical trial data of emerging PD-1 inhibitors in the treatment of advanced non-small-cell lung cancer

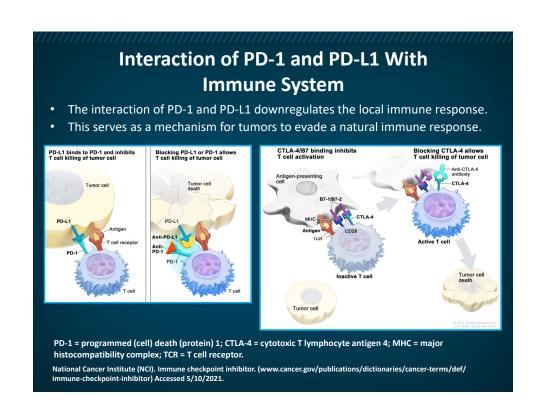
Introduction of the IC-ONC Network

IC-ONC = Immunotherapy Collaborative of Oncology Networked Communities.

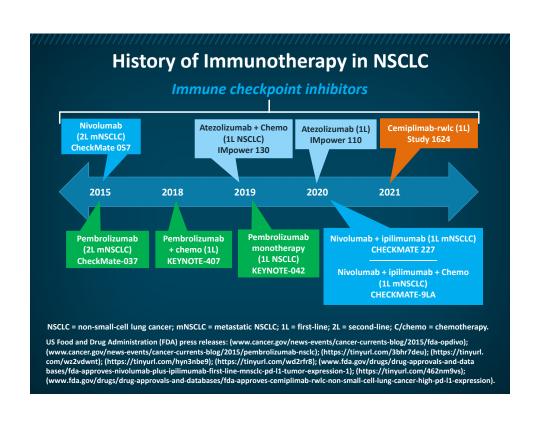
IC-ONC

- This program is part of the Immunotherapy Collaborative of Oncology Networked Communities (IC-ONC), a global information network in which multidisciplinary healthcare providers who are responsible for treating patients with cancer are connected via education.
- IC-ONC.org serves as the central location for educational resources and information
 pertinent to patients with cancer being treated with immunotherapy.
 - It is curated by global, national, and local oncology experts.
 - It provides dates and locations of upcoming live meetings.
 - It provides access to archived and enduring activities.
 - It identifies clinical articles.
 - It is a source of downloadable content and other inter-professional resources from more than 14 collaborative educational partners.
 - It provides access to our open-source immuno-oncology registry: The Observatory
- Its objective is to facilitate ongoing communication and collaboration among participating healthcare providers with the aim of providing optimal care for the patient with cancer.
- For more information, please visit www.ic-onc.org
- Supported by educational grants from Bristol Myers Squibb, Merck & Co., Inc., Pfizer, and Regeneron Pharmaceuticals Inc.




IC-ONC Observatory

- Through participation in this course, you will become a member of the IC-ONC Observatory
- Your login details will be emailed to you in the coming weeks
- For immediate information, please visit www.ic-onc.org



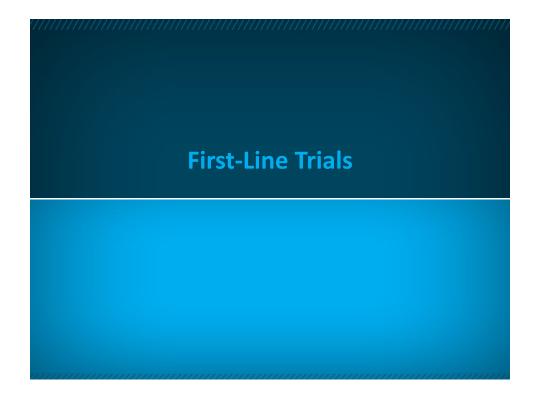
Tumorigenesis Primer: Immune System Dysfunction in NSCLC

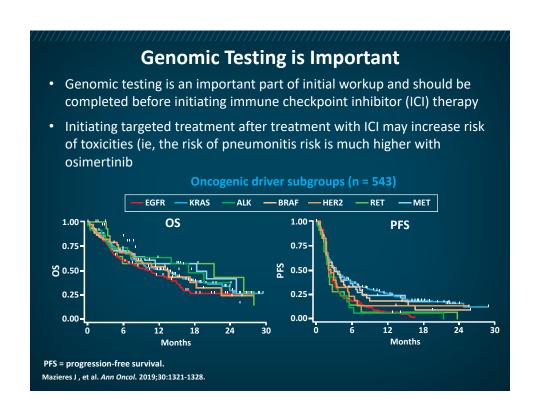
Checkpoint Inhibitor Regimens in Treating Advanced/Metastatic NSCLC

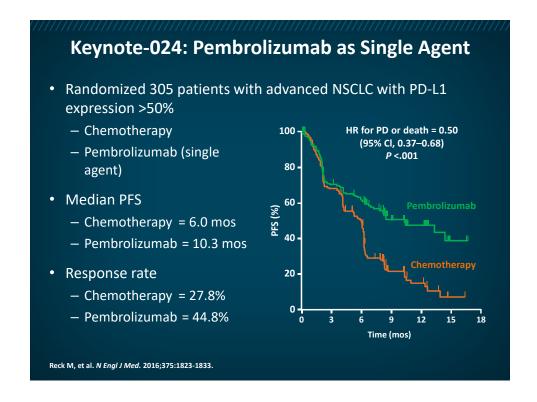
Immunotherapy in the Second-Line Setting

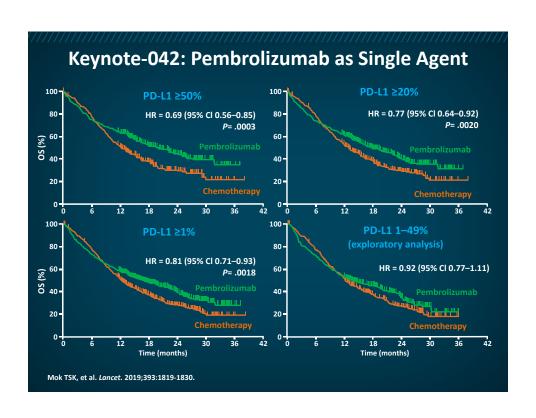
	ORR	DoR (95% CI)	DoR (95% CI) Median OS		1-yr OS	2-yr OS	
CheckMate 017 ^{1,2} —squamous							
Nivo, 3 mg/kg	20%	NR (2.9–20.5+)	9.2 mos	HR = 0.59	42%	23%	
Doc, 75 mg/m ²	9%	8.4 mos (1.4–15.2+)	6.0 mos	<i>P</i> <.001	24%	8%	
CheckMate 057 ^{2,3} —nonsquamous							
Nivo, 3 mg /kg	19%	17.2 mos (1.8–22.6+)	12.2 mos	HR = 0.73	51%	29%	
Doc, 75 mg/m ²	12%	5.6 mos (1.2–15.2+)	9.4 mos	<i>P</i> = .002	39%	16%	
KEYNOTE-010 ⁴ —all histologies, only PD-L1 tumors + ≥1% tumor cells staining positive							
Pembro, 2 mg/kg	18%	NR	10.4 mos HR = 0.71		43.2%	Not	
Doc, 75 mg/m ²	9%	6 mos	8.5 mos	<i>P</i> = .0008	34.6%	reported	
OAK5—all histologies 18-mo OS							
Atez, 1200 mg	14%	16.3 mos	13.8 mos	HR = 0.73	55%	40%	
Doc, 75 mg/m ²	13%	6.2 mos	9.6 mos	<i>P</i> = .0003	41%	27%	

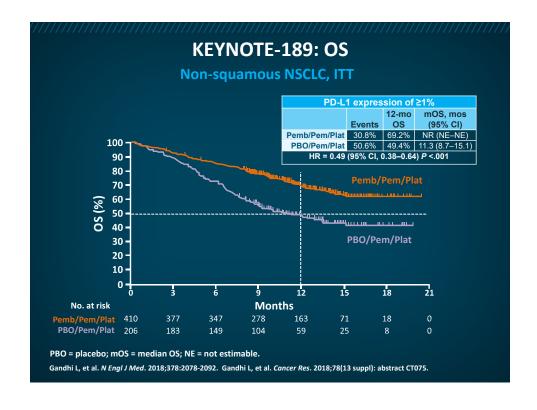
ORR = overall/objective response rate; DOR = duration of response; CI = confidence interval; mo(s) = month(s);
OS = overall survival; HR = hazard ratio; NR = not reached; Nivo = nivolumab; Doc = docetaxel; Pembro/Pemb = pembrolizumab; Atez = atezolizumab; yr = year.

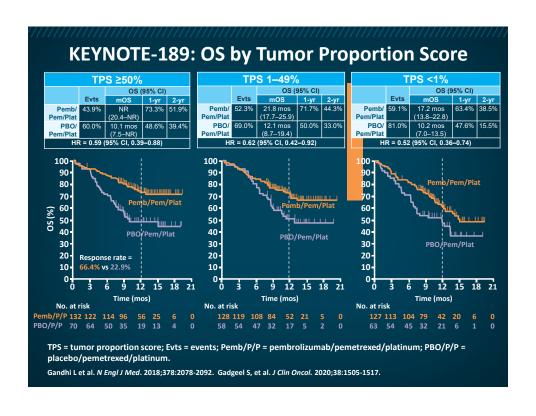

1. Brahmer J, et al. N Engl J Med. 2015;373:123-135. 2. Horn L, et al. J Clin Oncol. 2017;35:3924-3933. 3. Borghaei H, et al. N Engl J Med. 2015;373:1627-1639. 4. Herbst RS, et al. Lancet. 2016;387:1540-1550. 5. Rittmeyer A, et al. Lancet. 2017;389:255-265.

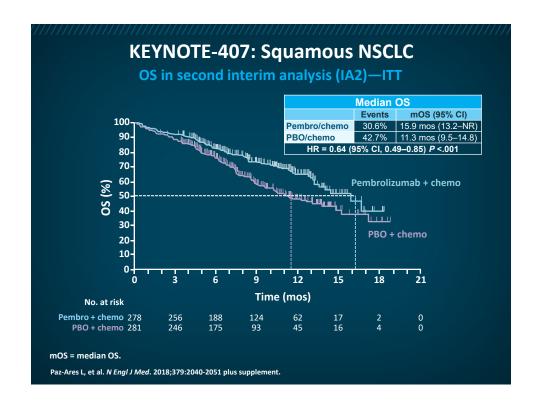

Case Study 1: Second-Line Pembrolizumab

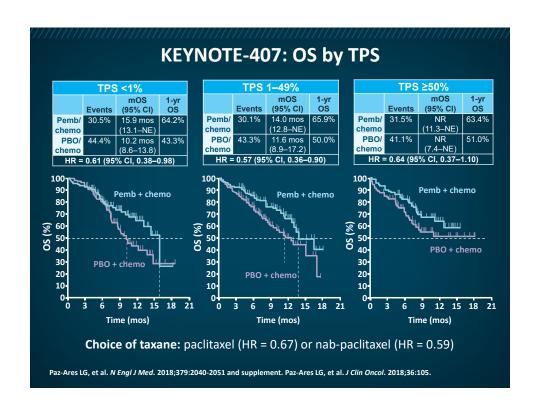

- 78-year-old woman with adenocarcinoma of lung on second-line pembrolizumab 5/4/2016–8/21/2018
- She experienced durable response for years after stopping pembrolizumab

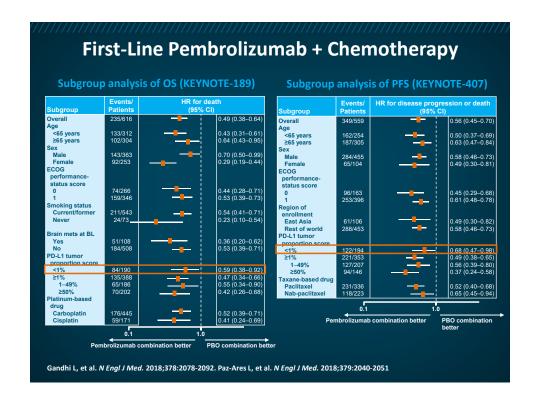


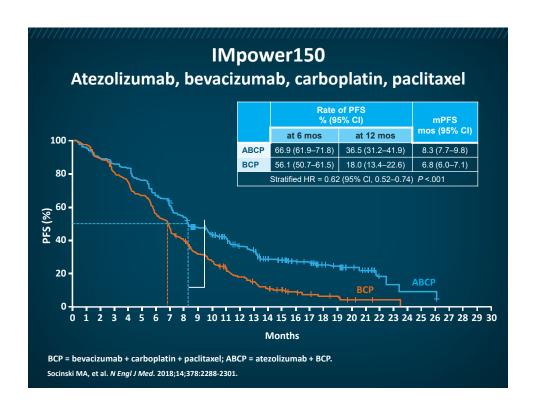


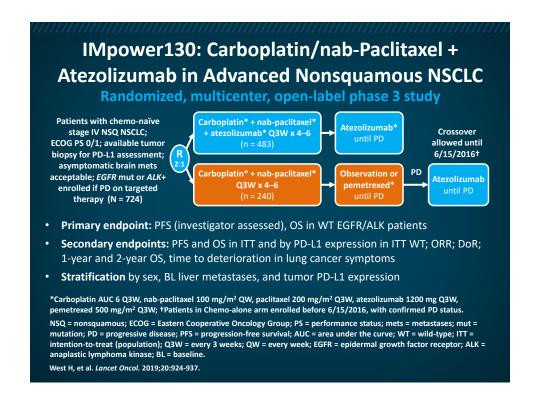


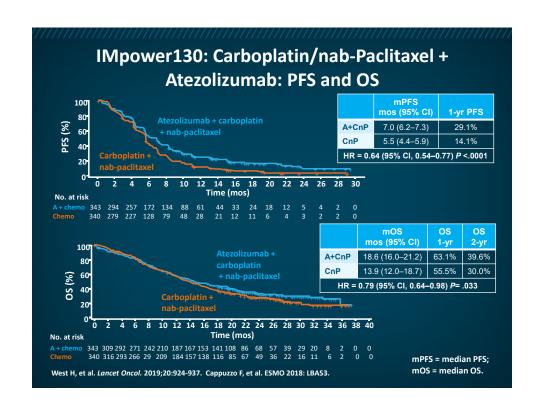


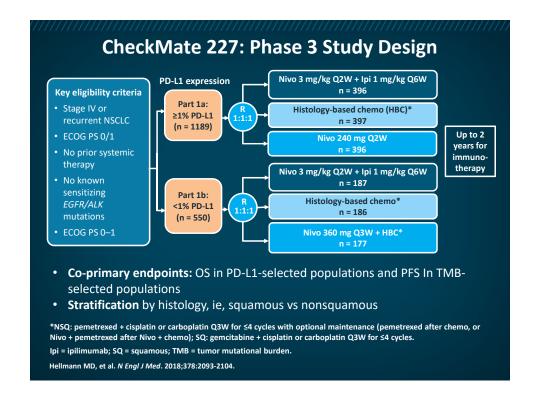


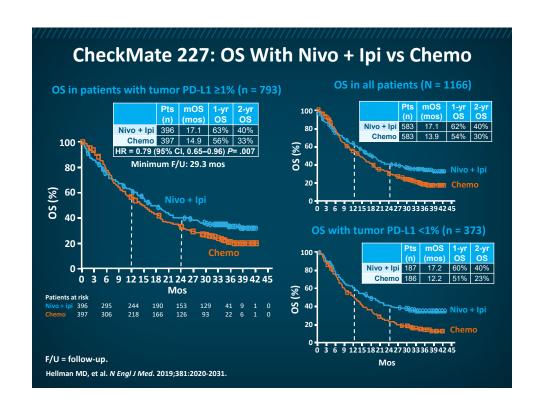


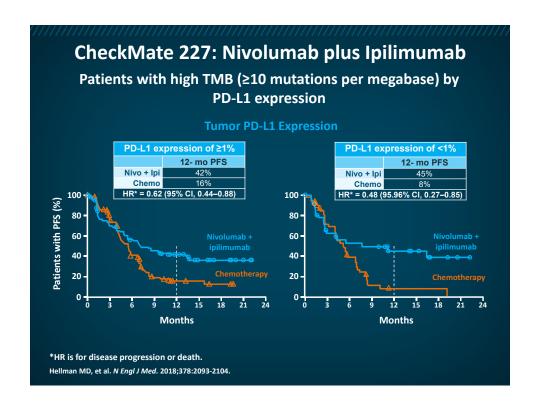


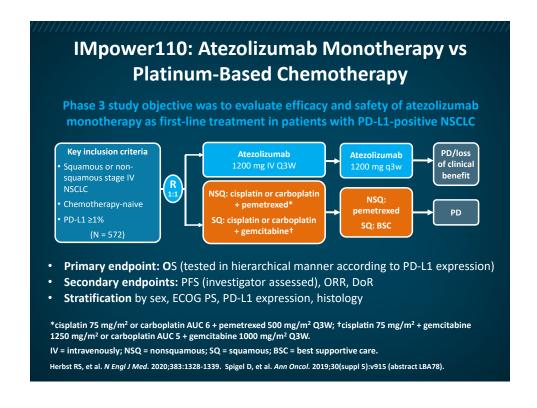


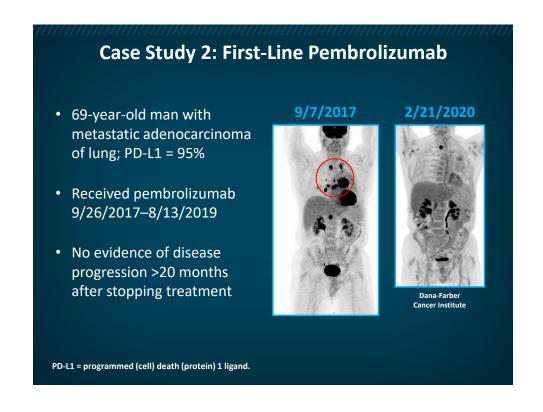


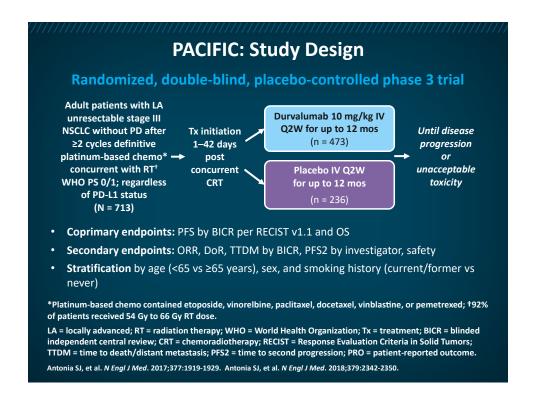


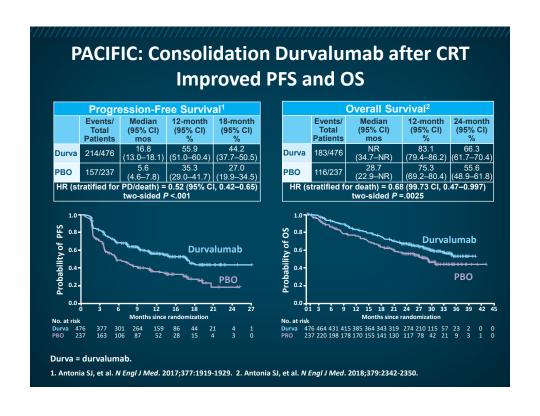


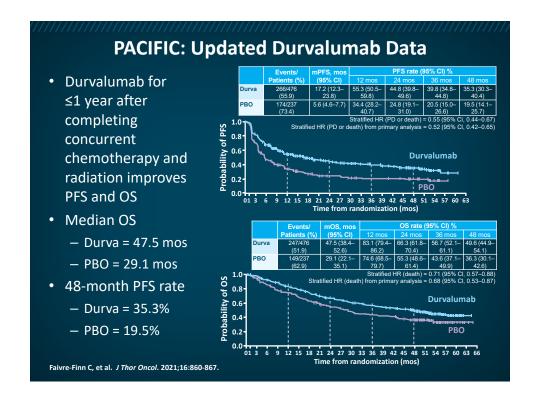


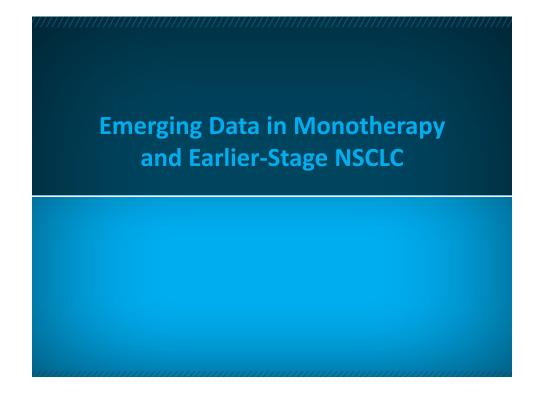









Treatment-related adverse events reported in at least 10% of patients						
	Nivolumab + Ipilimumab n = 576 n (%)		Nivolumab n = 391 n (%)		Chemotherapy n = 570 n (%)	
Event	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4
Any event	433 (75.2)	180 (31.2)	251 (64.2)	74 (18.9)	460 (80.7)	206 (36.1)
Any serious event Any event leading to discontinuation	138 (24.0) 100 (17.4)	102 (17.7) 69 (12.0)	42 (10.7) 45 (11.5)	30 (7.7) 27 (6.9)	79 (13.9) 51 (8.9)	61 (10.7) 28 (4.9)
Rash	96 (16.7)	9 (1.6)	43 (11.0)	3 (0.8)	29 (5.1)	0
Diarrhea	94 (16.3)	9 (1.6)	44 (11.3)	3 (0.8)	55 (9.6)	4 (0.7)
Pruritus	81 (14.1)	3 (0.5)	30 (7.7)	0	5 (0.9)	0
Fatigue	76 (13.2)	8 (1.4)	43 (11.0)	2 (0.5)	105 (18.4)	8 (1.4)
Decreased appetite	73 (12.7)	3 (0.5)	25 (6.4)	0	110 (19.3)	6 (1.1)
Hypothyroidism	67 (11.6)	2 (0.3)	25 (6.4)	1 (0.3)	0	0
Asthenia	56 (9.7)	7 (1.2)	29 (7.4)	2 (0.5)	72 (12.6)	5 (0.9)
Nausea	56 (9.7)	3 (0.5)	21 (5.4)	1 (0.3)	205 (36.0)	12 (2.1)
Vomiting	27 (4.7)	2 (0.3)	10 (2.6)	1 (0.3)	76 (13.3)	13 (2.3)
Constipation	23 (4.0)	0	6 (1.5)	0	86 (15.1)	2 (0.4)
Anemia	23 (4.0)	9 (1.6)	11 (2.8)	2 (0.5)	183 (32.1)	64 (11.2)
Neutrophil count decreased	4 (0.7)	0	0	0	64 (11.2)	36 (6.3)
Neutropenia	1 (0.2)	0	1 (0.3)	0	97 (17.0)	54 (9.5)

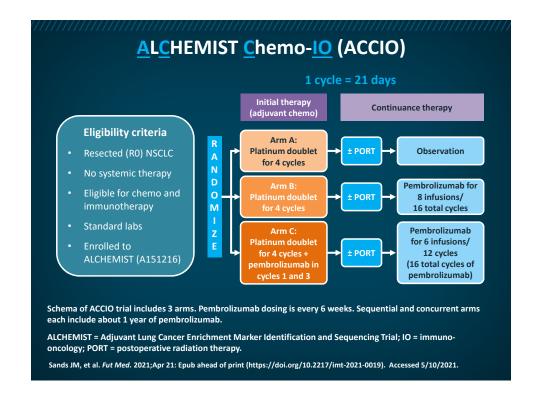


Neoadjuvant And Adjuvant Trials

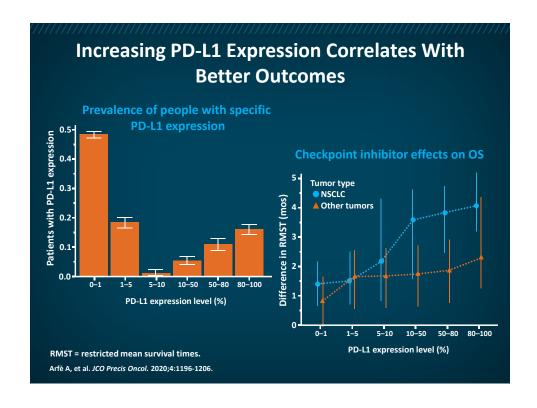
Neoadjuvant trials

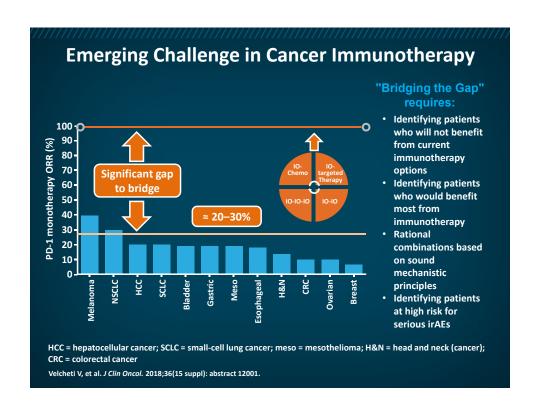

- LCMC3 atezolizumab
- NEOSTAR nivolumab ± ipilimumab
- NADIM II
- AEGEAN
- CheckMate 816

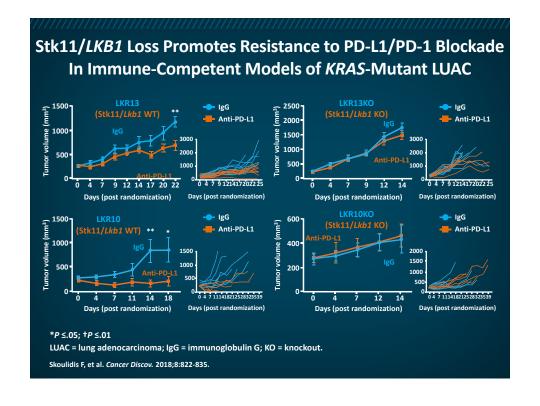
Adjuvant trials

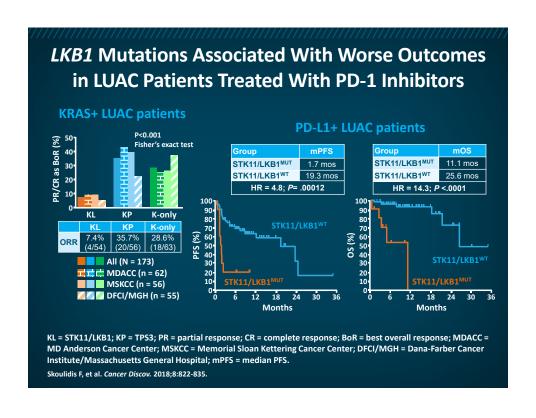

- ANVIL
- KEYNOTE-091/PEARLS
- IMpower 010
- A081801 (ACCIO)

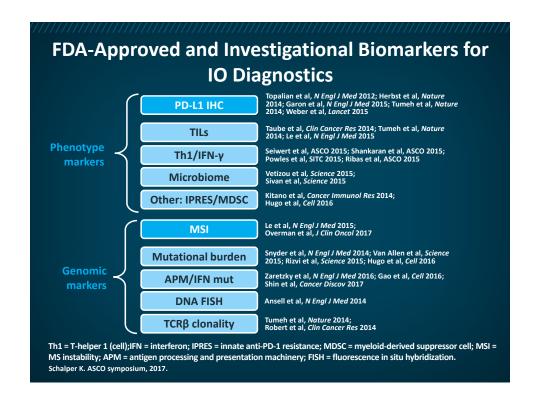
Provencio M, et al. Lancet Oncol. 2020;21:P1413-1422. Sands JM, et al. Fut Med. 2021;Apr 21: Epub ahead of print (https://doi.org/10.2217/imt-2021-0019). Accessed 5/10/2021. Clinical study reports (www.clinicaltrials.gov) for NCT02927301, NCT02259621, NCT03838159, NCT03800134, NCT02998528, NCT02595944, NCT02504372, NCT02486718, and NCT04267848.

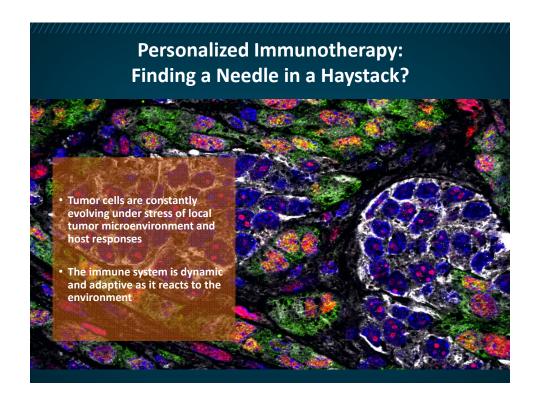

CheckMate 816 study design **Primary analysis population** Key eligibility criteria Newly diagnosed, Nivo 360 mg Q3W N = 358 Surgery resectable, stage IB Radiologic restaging + chemo* Q3W (3 cycles) Optional (within (≥4 cm)–IIIA NSCLC adjuvant 6 weeks (per TNM 7th edition) chemo ± post-ECOG PS 0-1 Chemo* Q3W (3 cycles) treatment) No known sensitizing EGFR mutations or Nivo 3 mg/kg Q2W (3 cycles) Database lock: 9/16/2020; ALK alterations + lpi 1 mg/kg (cycle 1 only)† minimum follow-up: 7.6 months for Nivo + chemo and chemo arms Primary endpoints: pCR by BIPR and EFS by BICR Secondary endpoints: MPR by BIPR, OS, time to death or distant mets Exploratory endpoints: ORR by BICR, predictive biomarkers (PD-L1, TMB, ctDNA) Stratification by stage (IB/II vs IIIA), PD-L1 (≥1% vs <1%), and gender *NSQ: pemetrexed + cisplatin or paclitaxel + carboplatin; SQ: gemcitabine + cisplatin or paclitaxel + carboplatin; eVinorelbine + cisplatin, docetaxel + cisplatin, gemcitabine + cisplatin (SQ only), pemetrexed + cisplatin (NSQ only), or paclitaxel + carboplatin; †Randomized exploratory arm terminated early. TNM = tumor, nodes, metastasis; Q2W = every 2 weeks; pCR = pathological complete response; BIPR = blinded independent pathological review; EFS = event-free survival; BICR = blinded independent central review; MPR = major pathological response; ORR = objective response rate; ctDNA = circulating tumor deoxyribonucleic acid. Forde PM, et al. American Association for Cancer Research (AACR) 2021 (www.abstractsonline.com/pp8/#!/9325/presentation/5134). NCT02998528 (https://clinicaltrials.gov/ct2/show/NCT02998528). Accessed 5/10/2021.

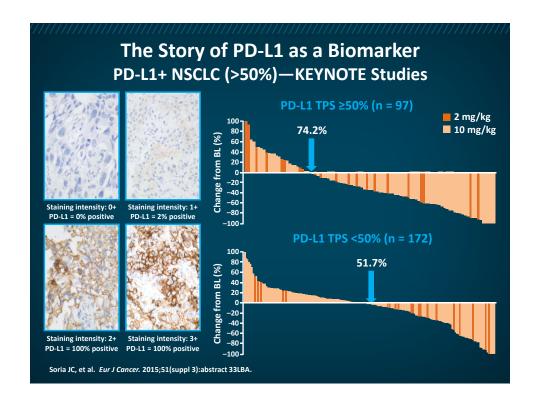


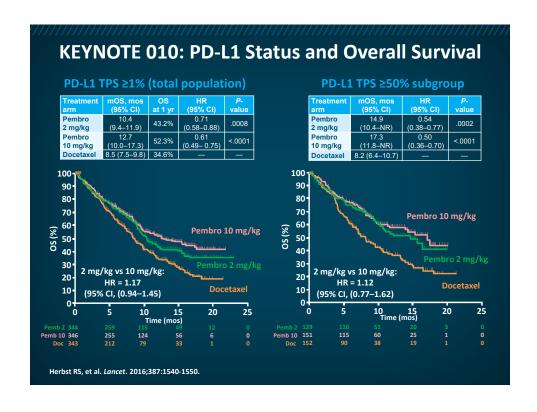

Patients, n (%)	NIVO + chemo (n = 179)	Chemo (n = 179)
atients receiving neoadjuvant treatment	176 (98)	176 (98)
Passon off neoadjuvant treatment Completed (3 cycles) Study drug toxicity Disease progression Other attients with definitive surgery Type of surgery Lobectomy Pneumonectomy Other R0 resection (negative margins)	165 (94) 10 (6) 1 (1) 0 149 (83) 115 (77) 25 (17) 29 (19) 124 (83)	149 (85) 12 (7) 2 (1) 13 (7) 135 (75) 82 (61) 34 (25) 35 (26) 105 (78)
tients with cancelled definitive surgery Disease progression Adverse event Other tients with delayed surgery Administrative reason	28 (16) 12 (7) 2 (1) 14 (8) 31 (21) 17 (11)	38 (21) 17 (9) 2 (1) 19 (11) 24 (18) 8 (6)
Adverse event Other	6 (4) 8 (5)	9 (7) 7 (5)

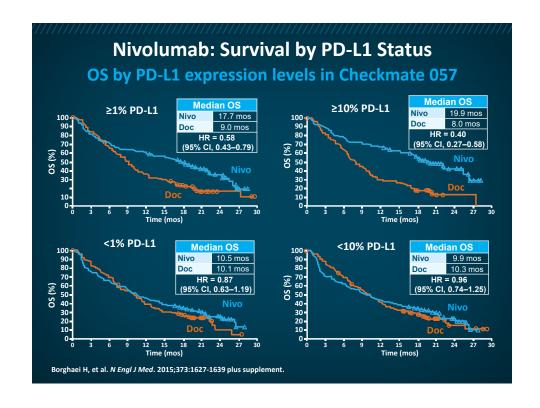


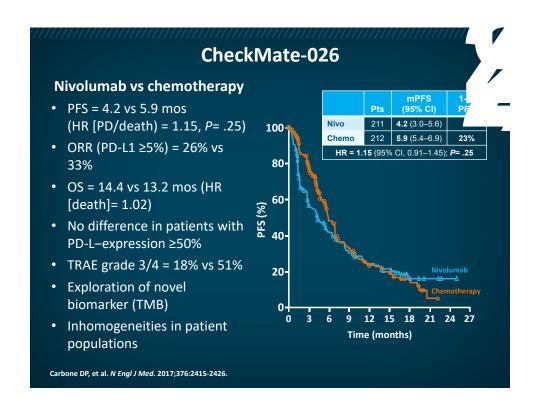

Using Biomarkers to Determine Immuno-oncology Treatment

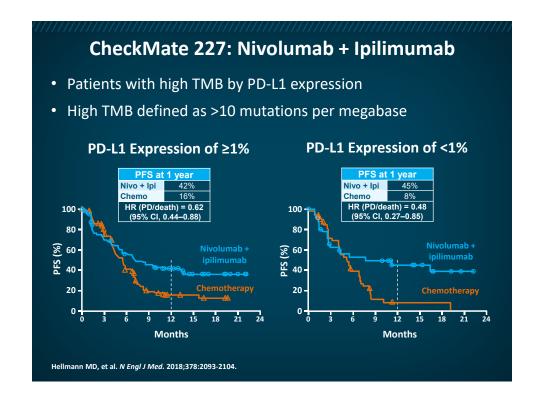


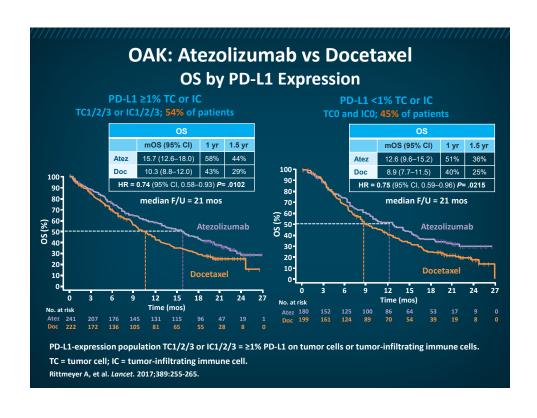












Challenges with PD-L1 Biomarker Evaluation When Choosing Patients for Immunotherapy

- 1. How different are PD-L1 IHC assays in terms of staining characteristics?
- 2. Can these assays be used interchangeably to determine the tumor's PD-L1 status?
- 3. Is PD-1 status reproducible, ie, is there spatial and temporal heterogeneity?

IHC = immunohistochemistry.

Are All PD-L1 Tests Created Equal?

Agents	Assay	Patient selection	Cut-offs used in Trials
Nivolumab	28-8	None	Tumor cells: 1%, 5%
Pembrolizumab	22C3	Tumor cells >50% 1st line, 1% 2nd line, or none with chemo	Tumor cells: 1%, 5%, 50%
Atezolizumab	SP142	None	Tumor cells: 1%, 5%, 10% Immune cells: 1%, 5%, 10%
Durvalumab	SP263	?	Tumor cells: >25%

Modified from Tsao MS. ESMO 2016 (https://cslide.ctimeetingtech.com/library/esmo/browse/search/BJX#2z9t02f). Accessed 5/13/2021.

Real-World Distribution of PD-L1 Tumor Expression by Assay Type

PD-L1 Biomarker IHC Assay Results (N = 1728*)

PD-L1 tumor	FDA-ap	proved IHC a	Laboratory-developed		
expression, categories [†]	Dako 22C3 (N = 1335)	Dako 28-8 (N = 90)	Ventana SP142 (N = 75)‡	tests, n (%) (N = 323)	
<1%	478 (35.8)	37 (41.1)	46 (61.3)	127 (39.3)	
1–49%	376 (28.2)	25 (27.8)	16 (21.3)	107 (33.1)	
≥50%	481 (36.0)	28 (31.1)	13 (17.3)	89 (27.6)	

*Some patients had >1 test and are represented in >1 column; $^{\dagger}P$ <.0001 for χ^2 test comparing results across 4 assay types, and P= .053 for χ^2 test comparing results across 3 assay types, excluding the Ventana SP142; † percentage of tumor cells staining for PD-L1.

Velcheti V, et al. J Thorac Oncol. 2017; 12(supp 2): S1779-S1780 (abstract OA 13.02).

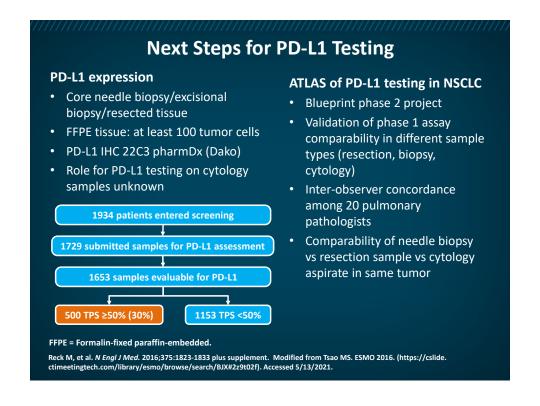
Tumor PD-L1 Heterogeneity PD-L1 heterogeneity Immunofluorescence shows stroma and epithelial staining are often concordant and adjacent Green = cytokeratin; Blue = nuclei; Red = PD-L1 (SP142) • Heterogeneity—multiple tumors and Defining a positive result (cut-offs): multiple passes within a tumor • Cell type expressing PD-L1 (immune cell vs tumor or both) • Interval between biopsy and treatment • Location of expression—cell surface vs • Primary vs metastatic disease intracellular vs stromal • Intensity, percent of "positive" cells Antibody and staining conditions • Distribution—patchy vs diffuse, intratumoral vs peripheral McLaughlin J, et al. JAMA Oncol. 2016;2:46-54.

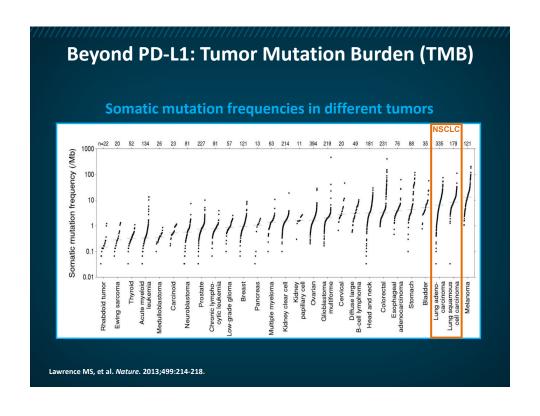
Distribution of PD-L1 Tumor Expression by Assay Type in Patients with Metastatic NSCLC (MNSCLC)

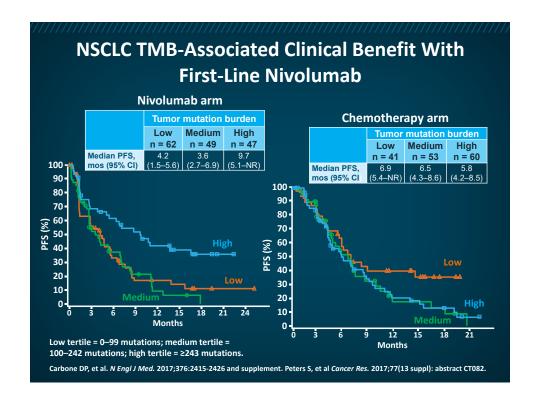
PD-L1 biomarker immunohistochemical (IHC) assay results for 1728 patients with mNSCLC whose tumors were tested from October 2015 through March 2017, by assay type*

	FDA-approved IHC assay, n (%)			Laboratory-
PD-L1 tumor expression, categorized [‡]	Dako 22C3 (N=1335)	Dako 28-8 (N=90)	Ventana SP142† (N=75)	developed tests. n (%) (N=323)
<1%	478 (35.8)	37 (41.1)	46 (61.3)	127 (39.3)
1-49%	376 (28.2)	25 (27.8)	16 (21.3)	107 (33.1)
≥50%	481 (36.0)	28 (31.1)	13 (17.3)	89 (27.6)

*Some patients had more than one test and are represented in more than one column.


†Ventana SP142 results represent percentage of tumor cells staining for PD-L1.

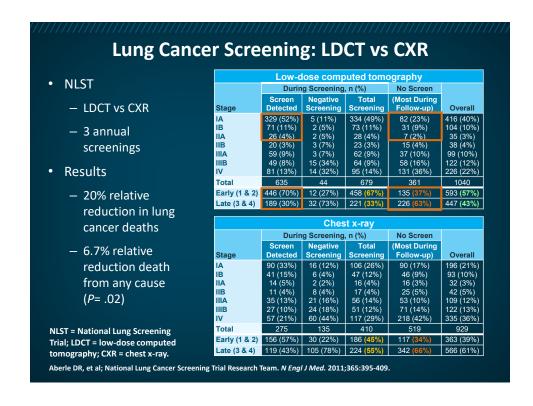

p<0.0001 for χ^2 test comparing results across the four assay types, and p=0.053 for χ^2 test comparing results across three assay types, excluding the Ventana SP142 assay.

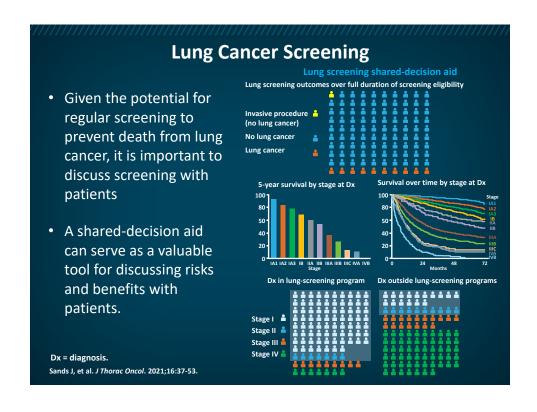

FDA, Food and Drug Administration

Velcheti V, et al. World Conference on Lung Cancer (WCLC). 2017.

Predictive Molecular Markers in Era of Immunotherapy Whole cohort 22C3, 28-8, and SP263 100 show comparable 22C3 staining across 28-8 80-Tumor staining (%) SP142 specimens SP263 73-10 SP142 has less sensitivity 20- E1L3N also shows comparable staining 80 40 Cases Tsao MS, et al. J Thorac Oncol. 2018;13:1302-1311. Hodgson A, et al. Am J Surg Pathol. 2018;42:1059-1066. Nagaria TS, et al. J Pancreatology. 2020;3:132-138.

Summary of Biomarker Testing

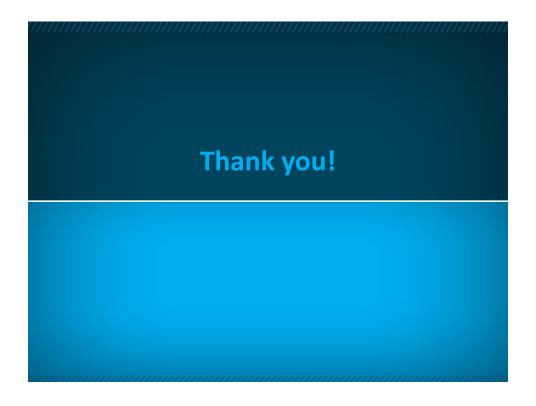

- Now: PD-L1
 - Utility in first line to determine appropriateness of single-agent immunotherapy
 - Multiple PD-L1 IHC assay options; questions remain about SP142
- Next: tumor mutation burden
 - High TMB is distinct population from PD-L1 and may predict for immunotherapy benefit
 - Some complexity in analysis and cutoff. Blood-based assays may be an option. Further study is required
- Future: multidimensional...and serial
 - Identify dynamic changes in tumor, tumor microenvironment, and host
 - Identify resistance strategies


Lung-Cancer Screening

Lung-Cancer Screening

- The most effective way to dramatically improve outcomes in NSCLC is early detection
- Multiple trials have shown a significant improvement in lungcancer survival with lung screening, despite screening at limited time points throughout the trials

Sands J, et al. J Thorac Oncol. 2021;16:37-53.



Key Takeaways

- Genomic testing is a critical part of the initial workup and should be completed before initiating immunotherapy treatment.
- Immunotherapy has become an important standard of care option in the management of NSCLC, with some of the most durable results among responders.
- PD-L1 status should drive decision-making about first-line therapy options for NSCLC.
- Lung cancer screening for eligible individuals is the standard of care and significantly increases the likelihood of diagnosing NSCLC when it is still potentially curable.

Immunotherapy and Immune-Related Adverse Events: HOW DOES IT AFFECT ME?

WELCOME TO AUGMENTED REALITY...

a tour in the palm of your hand!

This augmented reality application was designed using images and animations to highlight aspects of immunotherapy and its role in the treatment of cancer. Specifically, the video focuses on immune-related adverse events (IRAEs), which can occur when these therapies turn on the immune system to fight cancer. This tool will take you through the various therapies available; identification, types, grading and management of IRAEs; and ways in which the patient can become more involved.

The images and animations that are brought to reality can be manipulated and controlled by YOU, allowing you to focus on specific areas and be truly engaged in the learning tool.

To use this augmented reality application, please download the "IRAE-AR" app from the Apple App Store or Google Play Store on your phone or tablet.

- Press the start button, and slowly move your device to scan the area around you
- Once a flat surface has been found, you will see a marker appear
- Move your device to reposition the marker, and tap the screen when you are ready to begin
- Try rotating your device to landscape mode for a wider view

Identifying Optimal Combinations of Immune-Based Therapies: Metastatic NSCLC

Resource	Address
Abbas A, et al. Cellular and Molecular	https://www.elsevier.com/books/cellular-
Immunology. 10th ed. Elsevier; 2012.	and-molecular-immunology/abbas/978-0-
	<u>323-75748-5</u>
Akinleye A, Rasool Z. Immune checkpoint	https://pubmed.ncbi.nlm.nih.gov/31488176
inhibitors of PD-L1 as cancer therapeutics. J	
Hematol Oncol. 2019;12:92.	
Antonia SJ, et al. Durvalumab after	https://pubmed.ncbi.nlm.nih.gov/28885881
chemoradiotherapy in stage III non-small-cell	
lung cancer. N Engl J Med. 2017;377:1919-	
1929.	
Antonia SJ, et al. Overall survival with	https://pubmed.ncbi.nlm.nih.gov/30280658
durvalumab after chemoradiotherapy in	
stage III NSCLC. N Engl J Med.	
2018;379:2342-2350.	
Arfe A, et al. Meta-analysis of PD-L1	https://ascopubs.org/doi/full/10.1200/PO.20
expression as a predictor of survival after	<u>.00150</u>
checkpoint blockade. JCO Precis Oncol.	
2020;4:1196-1206.	
Barlesi F, et al. LBA44_PR. Primary analysis	https://www.annalsofoncology.org/article/S0
from OAK, a randomized phase III study	923-7534(19)45268-X/fulltext
comparing atezolizumab with docetaxel in	
2L/3L NSCLC. Ann Oncol. 2016;27(suppl	
6):vi581.	
Borghaei H, et al. Nivolumab versus	https://pubmed.ncbi.nlm.nih.gov/26412456
docetaxel in advanced nonsquamous non-	
small-cell lung cancer. N Engl J Med.	
2015;373:1627-1639.	
Boudreau JE, et al. Engineering dendritic cells	https://www.ncbi.nlm.nih.gov/pmc/articles/
to enhance cancer immunotherapy. <i>Mol</i>	pmid/21468005
Ther. 2011;19:841-853.	
Brahmer J, et al. Nivolumab versus docetaxel	https://pubmed.ncbi.nlm.nih.gov/26028407
in advanced squamous-cell non-small-cell	
lung cancer. N Engl J Med. 2015;373:123-135.	
Carbone DP, et al. First-line nivolumab in	https://pubmed.ncbi.nlm.nih.gov/28636851
stage IV or recurrent non-small-cell lung	
cancer. N Engl J Med. 2017;376:2415-2426.	
Faivre-Finn C, et al. Four-year survival with	https://www.jto.org/article/S1556-
durvalumab after chemoradiotherapy in	0864(21)00022-8/fulltext
stage III NSCLC—an update from the PACIFIC	
Trial. <i>J Thor Oncol</i> . 2021;16:P860-P867.	

	T
Forde PM, et al. CT003 - nivolumab (NIVO) +	https://www.abstractsonline.com/pp8/#!/93
platinum-doublet chemotherapy (chemo) vs	25/presentation/5134
chemo as neoadjuvant treatment (tx) for	
resectable (IB-IIIA) non-small cell lung cancer	
(NSCLC) in the phase 3 CheckMate 816 trial.	
Presented at: AACR Annual Meeting 2021;	
April 10-15, 2021; Virtual. Abstract CT003.	
Gandhi L, et al. Pembrolizumab plus	https://pubmed.ncbi.nlm.nih.gov/29658856
chemotherapy in metastatic non-small-cell	
lung cancer. N Engl J Med. 2018;378:2078-	
2092.	
Ghandi L, et al. Abstract CT075: KEYNOTE-	https://cancerres.aacrjournals.org/content/7
189: randomized, double-blind, phase 3	8/13 Supplement/CT075
study of pembrolizumab (pembro) or placebo	
plus pemetrexed (pem) and platinum as first-	
line therapy for metastatic NSCLC. Cancer	
Res. 2018;78(13 suppl):CT075.	
Gadgeel S, et al. Updated analysis from	https://pubmed.ncbi.nlm.nih.gov/32150489/
KEYNOTE-189: Pembrolizumab or placebo	
plus pemetrexed and platinum for previously	
untreated metastatic nonsquamous non–	
small-cell lung cancer. J Clin Oncol.	
2020;3(14):1505-1517.	
Hellmann MD, et al. Nivolumab plus	https://www.ncbi.nlm.nih.gov/pmc/articles/
ipilimumab in lung cancer with a high tumor	pmid/29658845
mutational burden. N Engl J Med.	
2018;378:2093-2104.	
Hellmann MD, et al. Nivolumab plus	https://www.nejm.org/doi/full/10.1056/nej
ipilimumab in advanced non-small-cell lung	moa1910231
cancer. N Engl J Med. 2019;381:2020-2031.	
Herbst R, et al. Pembrolizumab versus	https://linkinghub.elsevier.com/retrieve/pii/
docetaxel for previously treated, PD-L1-	<u>S0140-6736(15)01281-7</u>
positive, advanced non-small-cell lung cancer	
(KEYNOTE-010): a randomised controlled	
trial. <i>Lancet</i> . 2016;387:1540-1550.	
Herbst RS, et al. Atezolizumab for first-line	https://pubmed.ncbi.nlm.nih.gov/32997907
treatment of PD-L1-selected patients with	
NSCLC. N Engl J Med. 2020;383:1328-1339.	
Hodgson A, et al. PD-L1	https://www.ncbi.nlm.nih.gov/pmc/articles/
immunohistochemistry assay concordance in	PMC6750743
urothelial carcinoma of the bladder and	
hypopharyngeal squamous cell carcinoma.	
Am J Surg Pathol. 2018;42:1059-1066.	
hypopharyngeal squamous cell carcinoma.	

Lavarana NAC at al NAvtational	https://www.mateura.aam/articles/mateura122
Lawrence MS, et al. Mutational	https://www.nature.com/articles/nature122
heterogeneity in cancer and the search for	<u>13</u>
new cancer-associated genes. <i>Nature</i> .	
2013;499:214-218.	
Mazieres J, Drilon A, Lusque A, et al. Immune	https://www.ncbi.nlm.nih.gov/pmc/articles/
checkpoint inhibitors for patients with	PMC7389252/pdf/main.pdf
advanced lung cancer and oncogenic driver	
alterations: Results from the	
IMMUNOTARGET registry. Ann Oncol.	
2019;30(8):1321-1328.	
McLaughlin J, et al. Quantitative assessment	https://www.ncbi.nlm.nih.gov/pmc/articles/
of the heterogeneity of PD-L1 expression in	pmid/26562159
non-small-cell lung cancer. JAMA Oncol.	
2016;2:46-54.	
Mellman I, et al. Cancer immunotherapy	https://www.ncbi.nlm.nih.gov/pmc/articles/
comes of age. <i>Nature</i> . 2011;480:480-489.	pmid/22193102
Mok TSK, et al. Pembrolizumab versus	https://www.thelancet.com/journals/lancet/
chemotherapy for previously untreated, PD-	article/PIIS0140-6736(18)32409-7/fulltext
L1-expressing, locally advanced or metastatic	<u> </u>
non-small-cell lung cancer (KEYNOTE-042): a	
randomised, open-label, controlled, phase 3	
trial. <i>Lancet</i> . 2019;393:1819-1830.	
Murphy KM, Weaver C. Janeway's	https://www.routledge.com/Janeways-
Immunobiology. 9th ed. WW Norton & Co;	Immunobiology/Murphy-
2016.	Weaver/p/book/9780429084881
Nagaria TS, et al. Predictive molecular	https://journals.lww.com/jpancreatology/Ful
markers in the era of immunotherapy. J	Itext/2020/09000/Predictive molecular mar
• •	
Pancreat. 2020;3:132-138.	kers in the era of.3.aspx
National Cancer Institute. Immune	https://www.cancer.gov/publications/diction
checkpoint inhibitor.	aries/cancer-terms/def/immune-checkpoint-
TI N	inhibitor
The National Lung Cancer Screening Research	https://www.nejm.org/doi/full/10.1056/nej
Team, et al. Reduced lung-cancer mortality	<u>moa1102873</u>
with low-dose computed tomographic	
screening. <i>N Engl J Med</i> . 2011;365:395-409.	
Pardoll DM. The blockade of immune	https://www.nature.com/articles/nrc3239.p
checkpoints in cancer immunotherapy. <i>Nat</i>	<u>df</u>
Rev Cancer. 2012;12:252-264.	
Paz Ares LG, et al. Phase 3 study of	https://ascopubs.org/doi/abs/10.1200/JCO.2
carboplatin-paclitaxel/nab-paclitaxel (chemo)	
carbopiatin pacintaxer, hab pacintaxer (circino)	018.36.15 suppl.105
with or without pembrolizumab (pembro) for	018.36.15 suppl.105
carbonlatin-naclitaxel/nab-naclitaxel (chemo)	

non-small cell lung cancer (NSCLC). J Clin	
Oncol. 2018;36(15 suppl):105.	1 // 1 1 1 /20200525
Paz-Ares L, et al. Pembrolizumab plus	https://pubmed.ncbi.nlm.nih.gov/30280635
chemotherapy for squamous non-small-cell	
lung cancer. N Engl J Med. 2018;379:2040-	
2051.	
Peters S, et al. Abstract CT082: Impact of	https://cancerres.aacrjournals.org/content/7
tumor mutation burden on the efficacy of	7/13 Supplement/CT082.short
first-line nivolumab in stage iv or recurrent	
non-small cell lung cancer: an exploratory	
analysis of CheckMate 026. Cancer Res.	
2017;77(13 suppl):CT082.	
Provencio M, et al. Neoadjuvant	https://www.thelancet.com/journals/lanonc/
chemotherapy and nivolumab in resectable	article/PIIS1470-2045(20)30453-8/fulltext
non-small-cell lung cancer (NADIM): an open-	
label, multicentre, single-arm, phase 2 trial.	
Lancet. 2020;21:1414-1422.	
Ramalingam SS, et al. Nivolumab +	https://ascopubs.org/doi/abs/10.1200/JCO.2
ipilimumab versus platinum-doublet	020.38.15 suppl.9500
chemotherapy as first-line treatment for	
advanced non-small cell lung cancer: three-	
year update from CheckMate 227 Part 1. J	
Clin Oncol. 2020;38(suppl 15):9500.	
Reck M, et al. Pembrolizumab versus	https://pubmed.ncbi.nlm.nih.gov/27718847
chemotherapy for PD-L1-positive non-small-	
cell lung cancer. N Engl J Med.	
2016;375:1823-1833.	
Rittmeyer A, et al. Atezolizumab versus	https://pubmed.ncbi.nlm.nih.gov/27979383
docetaxel in patients with previously treated	
non-small-cell lung cancer (OAK): a phase 3,	
open-label, multicentre randomised	
controlled trial. Lancet. 2017;389:255-265.	
Sands J, et al. Lung screening benefits and	https://www.jto.org/article/S1556-
challenges: a review of the data and outline	0864(20)30993-X/fulltext
for implementation. J Thorac Oncol.	
2021;16:37-53.	
Sands JM, et al. Integration of	https://www.futuremedicine.com/doi/10.22
immunotherapy into adjuvant therapy for	17/imt-2021-0019
resected non-small-cell lung cancer:	
ALCHEMIST chemo-IO (ACCIO).	
Immunotherapy. 2021;13:727-734.	
Skoulidis F, et al. STK11/LKB1 mutations and	https://www.ncbi.nlm.nih.gov/pmc/articles/
PD-1 inhibitor resistance in KRAS-mutant lung	pmid/29773717
	<u> </u>

adenocarcinoma. Cancer Discov. 2018;8:822-	
835.	
Socinski MA, et al. Atezolizumab for first-line	https://www.nejm.org/doi/10.1056/NEJMoa
treatment of metastatic nonsquamous	<u>1716948?url_ver=Z39.88-</u>
NSCLC. N Engl J Med. 2018;378:2288-2301.	2003𝔯 id=ori:rid:crossref.org𝔯 dat=cr
	pub%20%200www.ncbi.nlm.nih.gov
Soria JC, et al. 33LBA efficacy and safety of	https://www.ejcancer.com/article/S0959-
pembrolizumab (pembro; MK-3475) for	8049(15)30077-0/fulltext
patients (pts) with previously treated	
advanced non-small cell lung cancer (NSCLC)	
enrolled in KEYNOTE-001. Eur J Cancer.	
2015;51(suppl 3):S726-S727.	
Spigel D, et al. LBA78. IMpower110: interim	https://www.annalsofoncology.org/article/S0
overall survival (OS) analysis of a phase III	923-7534(19)60359-5/pdf
study of atezolizumab (atezo) vs platinum-	
based chemotherapy (chemo) as first-line	
(1L) treatment (tx) in PD-L1—selected NSCLC.	
Ann Oncol. 2019;30(suppl 5):v851-v934.	
Tsao MS, et al. PD-L1 immunohistochemistry	https://www.jto.org/action/showPdf?pii=S15
comparability study in real-life clinical	56-0864%2818%2930626-9
samples: results of blueprint phase 2 project.	30-0804/02818/02930020-9
J Thorac Oncol. 2018;13:1302-1311.	
Tsao MS. Can we select the right patient for	https://cslide.ctimeetingtech.com/library/es
Immunotherapy in NSCLC? The pathologist's	
	mo/browse/search/BJX#2z9t02f
point of view. Presented at: ESMO Congress	
2016; October 10, 2016; Copenhagen.	https://www.ita.aug/action/abaw.Ddf2aii_C1F
Velcheti V, et al. OA 13.02. Distribution of	https://www.jto.org/action/showPdf?pii=S15
PD-L1 tumor expression by assay type in	<u>56-0864%2817%2931137-1</u>
patients with metastatic NSCLC (MNSCLC). J	
Thor Oncol. 2017;12(11 suppl 2):S1779-	
\$1780.	1 11
Velcheti V, et al. Prospective clinical	https://ascopubs.org/doi/abs/10.1200/JCO.2
evaluation of blood-based tumor mutational	018.36.15 suppl.12001
burden (bTMB) as a predictive biomarker for	
atezolizumab (atezo) in 1L non-small cell lung	
cancer (NSCLC): interim B-F1RST results. <i>J Clin</i>	
Oncol. 2018;36(15 suppl):12001.	
West H, et al. Atezolizumab in combination	https://pubmed.ncbi.nlm.nih.gov/31122901
with carboplatin plus nab-paclitaxel	
chemotherapy compared with chemotherapy	
alone as first-line treatment for metastatic	
non-squamous non-small-cell lung cancer	
(IMpower130): a multicentre, randomised,	
1	

open-label, phase 3 trial. Lancet Oncol.	
2019;20:924-937.	