Managing Castration-sensitive PROSTATE CANCER: *How Does Your Approach Compare with the Experts?*

This activity is provided by Med Learning Group. This activity is co-provided by Ultimate Medical Academy/Complete Conference Management (CCM). from Astellas.

This activity is supported by an educational grant from Astellas.

AGENDA

I. Managing Patients with Castration-Sensitive Prostate Cancer (CSPC)

- a. Risk stratification
- b. Initial management of noncastrate advanced, recurrent, or metastatic disease
- c. Biochemical recurrence without metastatic disease
- d. Hormonal therapies for prostate cancer
- e. Clinical trial data on new hormonal therapies

II. Treating Metastatic Disease

- a. Guideline-recommended treatment of mCSPC
- b. When to use chemotherapy in mCSPC
- c. Defining "high-volume" and "high-risk" disease
- d. Clinical trial data on the efficacy and safety of available treatment options
 - i. Abiraterone
 - ii. Enzalutamide
 - iii. Apalutamide
- e. Managing adverse events

III. Personalizing the Care of Patients with CSPC

- a. Treatment considerations in mCSPC
- b. How to personalize the selection of treatment options
- c. Real-world patterns in mCSPC
- d. Shared decision-making in clinical practice
- **IV.** Conclusions
- V. Questions and Answers

Managing Castration-sensitive Prostate Cancer: How Does Your Approach Compare with the Experts'?

FACULTY

Neal Shore, MD (Program Chair) Director, CPI, Carolina Urologic Research Center Myrtle Beach, South Carolina

Speaking Faculty

Thomas Cartwright, MD Co-Chairman, US Oncology GI Research Associate Professor of Medicine University of Central Florida College of Medicine Ocala, Florida Neil Desai, MD Assistant Professor Radiation Oncology UT Southwestern Medical Center Assistant Professor Radiation Oncology UT Southwestern Medical Center Dallas, Texas Isla Pearl Garraway, MD, PhD Associate Professor Attending Urologist UCLA Los Angeles, California

PROGRAM OVERVIEW

This live activity will cover early detection and intervention in prostate cancer.

TARGET AUDIENCE

This activity is designed to meet the educational needs urologists, medical oncologists, and other HCPs responsible for

treatment decisions for patients with prostate cancer, as well as primary care providers and other members of a multi-

disciplinary care team involved in the management of Adverse Events (AE's).

LEARNING OBJECTIVES

After completing the CME activity, learners should be better able to:

- Contrast the distinct mechanisms of action and clinical profiles of newer therapeutic regimens for managing CSPC in the disease's early stages and in the BCR setting
- Incorporate risk stratification approaches to inform clinical decision-making for managing patients with CSPC
- Plan strategies for diagnosing and managing AEs associated with newer therapeutic regimens for treating patients with CSPC
- Facilitate open communication and shared decision-making as part of patient-centered CSPC management

ACCREDITATION STATEMENT

Med Learning Group is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

CREDIT DESIGNATION STATEMENT

Med Learning Group designates this live activity for a maximum of 1.0 AMA Category 1 CreditTM. Physicians should claim only the credit commensurate with the extent of their participation in the live activity.

NURSING CREDIT INFORMATION

Purpose: This program would be beneficial for nurses involved in caring for patients with prostate cancer. Credit: 1.0 ANCC Contact Hour

CNE Accreditation Statement: Ultimate Medical Academy/CCM is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. Awarded 1.0 contact hour of continuing nursing education of RNs and APNs.

DISCLOSURE POLICY STATEMENT

In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards for Commercial Support, educational programs sponsored by Med Learning Group must demonstrate balance, independence, objectivity, and scientific rigor. All faculty, authors, editors, staff, and planning committee members participating in a MLG-sponsored activity are required to disclose any relevant financial interest or other relationship with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services that are discussed in an educational activity.

DISCLOSURE OF CONFLICTS OF INTEREST

Faculty	Relationship	Manufacturer
Neal Shore, MD	Speakers Bureau	Astellas, AZ, Bayer, Clovis Oncology, Janssen, Merck, Pfizer Guardant Health, Foundation Medicine, Dendreon, Exact Imaging, Exact Sciences, and FerGene
	Consultant	AbbVie, Amgen, Astellas, Astra Zeneca, Bayer, BMS, Boston Scientific, Clovis Oncology, and Cold Genesys
Thomas Cartwright, MS	Reports no relevant relations	hips with a commercial entity or manufacturer.
Neil Desai, MD	Consultant/Contracted Research	Boston Scientific
Isla Pearl Garraway, MD, PhD	Reports no relevant relations	hips with a commercial entity or manufacturer

CME content review

The content of this activity was independently peer reviewed.

The reviewer of this activity has nothing to disclose.

CNE Content Review

The content of this activity was peer reviewed by a nurse reviewer.

The reviewer of this activity has nothing to disclose.

The staff, planners, and managers reported the following financial relationships or relationships to products or devices they or their spouse/life partner have with commercial interests related to the content of this CME/CE activity:

Matthew Frese, MBA, General Manager of Med Learning Group, has nothing to disclose. Christina Gallo, SVP, Educational Development for Med Learning Group, has nothing to disclose. Sharine Griggs, Senior Program Manager for Med Learning Group, has nothing to disclose. Diana Tommasi, Medical Director for Med Learning Group, has nothing to disclose. Lauren Welch, MA, VP, Accreditation and Outcomes for Med Learning Group, has nothing to disclose. Daniel DaSilva, Accreditation and Outcomes Coordinator for Med Learning Group, has nothing to disclose.

DISCLOSURE OF UNLABELED USE

Med Learning Group requires that faculty participating in any CME activity disclose to the audience when discussing any unlabeled or investigational use of any commercial product or device not yet approved for use in the United States. During the course of this lecture, the faculty may mention the use of medications for both FDA-approved and nonapproved indications.

METHOD OF PARTICIPATION

There are no fees for participating and receiving CME credit for this live activity. To receive CME/CNE credit participants must:

- 1. Read the CME/CNE information and faculty disclosures.
- 2. Participate in the live activity.
- 3. Submit the pre- and post-test and evaluation form to Med Learning Group.

You will receive your certificate as a downloadable file.

DISCLAIMER

Med Learning Group makes every effort to develop CME activities that are scientifically based. This activity is designed for educational purposes. Participants have a responsibility to utilize this information to enhance their professional development in an effort to improve patient outcomes. Conclusions drawn by the participants should be derived from careful consideration of all available scientific information. The participant should use his/her clinical judgment, knowledge, experience, and diagnostic decision-making before applying any information, whether provided here or by others, for any professional use.

For CME questions, please contact Med Learning Group at info@medlearninggroup.com.

Contact this CME provider at Med Learning Group for privacy and confidentiality policy statement information at http://medlearninggroup.com/privacy-policy/

Copyright © 2021 Med Learning Group. All rights reserved. These materials may be used for personal use only. Any rebroadcast, distribution, or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Med Learning Group is prohibited.

This activity is provided by Med Learning Group.

This activity is co-provided by Ultimate Medical Academy/Complete Conference Management (CCM).

This activity is supported by an educational grant from Astellas.

Managing Castration-Sensitive Prostate Cancer: How Does Your Approach Compare with the Experts?

2

Learning Objectives

- Contrast the distinct mechanisms of action and clinical profiles of newer therapeutic regimens for the management of castration-sensitive prostate cancer (CSPC) in the early stages of disease and in the biochemical-recurrence setting
- Incorporate risk-stratification approaches to inform clinical decision-making for the management of patients with CSPC
- Plan strategies for diagnosing and managing adverse events associated with newer therapeutic regimens for the treatment of patients with CSPC
- Facilitate open communication and shared decision-making as part of patient-centered CSPC management

Risk Stratification

• Pretreatment parameters, including clinical stage, PSA, and Gleason score, are established predictors of disease recurrence and are used in high-risk disease classifications

AUA	RTOG	NCCN
Clinical T stage of at least cT2c OR Gleason score ≥8 OR PSA ≥20 ng/mL	PSA of 20-100 ng/mL, Gleason score of ≥7, and any clinical T stage OR PSA <100 ng/mL, Gleason score of 8-10, and clinical T stage cT2c	High-risk: Clinical T stage cT3a, Gleason score of ≥8, OR PSA of ≥20 ng/mL Very high-risk: T3b or T4 disease

AUA = American Urologic Association; RTOG = Radiation Therapy Oncology Group. McKay RR, et al. Am Soc Clin Oncol Educ Book. 2020;40:1-12.

Advanced Prostate Cancer: Biochemical Recurrence Without Metastatic Disease

Prognosis

- Inform patients of risk of developing metastatic disease
- Follow patients with serial PSA measurements and clinical evaluation
- In high risk patients (eg, PSADT <12 months), perform periodic staging evaluations consisting of cross sectional imaging (CT, MRI) and technetium bone scan
- Consider novel PET-CT scans in patients with negative conventional imaging
- May use radiographic assessments based on overall PSA and PSA kinetics

<u>Treatment</u>

- Offer observation or clinical trial enrollment
- Do NOT routinely initiate ADT
- Consider intermittent ADT in lieu of continuous ADT if ADT is initiated in the absence of metastatic disease

Lowrance WT, et al. 2021;20	5:14-21.
-----------------------------	----------

Drug	Monitoring parameters
Antiandrogens	Monitor serum transaminases at baseline and monthly for 1 st 4 months for all.
 Flutamide Bicalutamide 	Baseline chest x-ray and PFT at baseline for nilutamide.
 Nilutamide 	Periodic monitoring of CBC, EKG, echocardiograms, serum testosterone, LH, and PSA with bicalutamide.
Androgen Synthesis Inhibitor	Serum transaminases should be monitored at baseline, every 2 weeks for 3 months, and then monthly.
Abiraterone	Monitor for adrenocorticoid insufficiency, hypertension, hypokalemia, and fluid retention monthly.
LH agonists • Leuprolide	Leuprolide: Monitor serum testosterone 4 weeks after initiation, and PSA, blood glucose, and HbA1c at baseline and periodically.
Goserelin Triptorelin	Goserelin: Monitor bone mineral density, serum calcium, and cholesterol/lipids.
GNRH antagonist	Monitor LFTs, serum electrolytes, and bone mineral density at baseline.
DegarelixRelugolix	Monitor serum testosterone monthly until castration and then every other month once achieved.
Androgen receptor pathway inhibitors	Optimize management of cardiovascular risk factors, such as hypertension, diabetes, or dyslipidemia.
ARPI) Apalutamide Enzalutamide	Monitor and manage patients at risk for fractures and falls and consider use of bone-targeted agents with enzalutamide and apalutamide.
Darolutamide	Lower threshold for seizures with enzalutamide and apalutamide.

Secondary endpoints	Relugolix (n = 622)	Leuprolide (n = 308)	<i>P</i> -value
Proportion of patients with PSA response at day 15 followed with confirmation at day 29	79.4%	19.8%	<.001
Cumulative probability of testosterone suppression to <50 ng/dL on day 15	98.7%	12.0%	<.001
Cumulative probability of profound testosterone suppression to <20 ng/dL on day 15	78.4%	1.0%	<.001
Cumulative probability of testosterone suppression to <50 ng/dL on day 4	56.0%	0.0%	<.001
Mean of FSH level at end of week 24,	1.72	5.95	<.001

compared with leuprolide

IU = international unit. Shore ND, et al. *N Engl J Med.* 2020;382:2187-2196.

11

HERO: Adverse Events Reported for >10% of Patients in Either Treatment Group

	Relugolix (n = 622)	Leuprolide (n = 308)
Hot flush/flash	54.3%	51.6%
Fatigue	21.5%	18.5%
Constipation	12.2%	9.7%
Diarrhea*	12.2%	6.8%
Arthralgia	12.1%	9.1%
Hypertension	7.9%	11.7%

*Adverse events of diarrhea were grade 1 or 2 and did not result in study discontinuation. Shore ND, et al. *N Engl J Med.* 2020;382:2187-2196.

Reported RCTs in mCSPC								
RCTs in High-Volume, High-Risk mCSPC								
Trial	Clinical Trial Information	Comparator Arm	Control Arm	No. of Trial Participants	PFS, HR, or EP	OS, HR or EP		
Docetaxel CHAARTED	NCT00309985	ADT + DOC	ADT	513	0.58 (time to CRPC)	0.63		
GETUG-15 STAMPEDE arm C	NCT00104715 NCT00268476	ADT + DOC ADT + DOC	ADT ADT	183 724	NA NA	0.78 TBD		
ARPI LATITUDE STAMPEDE arm G	NCT01715285 NCT00268476	ADT + AAP ADT + AAP		955 473	NA 0.31 (FFS)	0.62		
ENZAMET	NCT02446405 NCT02677896	ADT + ENZA (± DOC) ADT + ENZA (prior DOC allowed)	ADT + NSSA (± DOC) ADT (prior DOC allowed)	588 727	0.45 0.44 (rPFS)	TBD		
TITAN	NCT02489318	ADT + APA (prior DOC allowed)	ADT (prior DOC allowed)	660	0.53	0.68		

RCT = randomized controlled trial; DOC = docetaxel; AAP = abiraterone acetate + prednisone; ENZA = enzalutamide; APA = apalutamide; NSAA = nonsteroidal antiandrogen; CRPC = castration-resistant prostate cancer; PFS = progression-free survival; rPFS = radiographic PFS; FFS = failure-free survival; HR = hazard ratio; EP = endpoint; NA = not available; TBD = to be determined. VanderWeele DJ, et al. *J Clin Oncol.* 2019;37:2961-2967.

AR-Targeted Agents: Trial Design and Patient Population Overview

	ARCHES ¹	ENZAMET ²	TITAN ³
	(double-blind)	(open-label)	(double-blind)
Treatment	Enzalutamide + ADT	Enzalutamide + ADT	Apalutamide + ADT
	(n = 574)	(n = 563)	(n = 525)
	vs PBO + ADT	vs NSAA + ADT	vs PBO + ADT
	(n = 576)	(n = 562)	(n = 527)
Key Inclusion criteria Metastasis	Bone or soft tissue	Bone or soft tissue	≥1 bone lesion ± visceral/ lymph-node involvement
Prior ADT Prior docetaxel Early concomitant docetaxel	Allowed Allowed (18%) Not allowed	Allowed Not allowed Allowed (45%)	Allowed Allowed (11%) Not allowed
Duration of therapy*	median =	at 36 months,	median =
	12.8 vs 11.6 mos	62% vs 34%	20.5 vs 18.3 mos

AR = androgen receptor; NSAA = nonsteroidal anti-androgen.

*first vs second treatment group listed.

1. Armstrong AJ, et al. J Clin Oncol. 2019;37:2974-2986. 2. Davis ID, et al. N Engl J Med. 2019;381:121-131. 3. Chi KN, et al N Engl J Med. 2019;381:13-24.

		Apalutamide	РВО	Apalutamide	РВО		
ubaroup		No. of events	patients	Median OS	(mos)	HR for a (95% (eath Cl)
All patients		83/525	117/527	NE	NE	Le-I	0.68 (0.51-0.90
Bone metastasis only at	Yes	28/289	53/269	NE	NE		0.47 (0.30-0.75
baseline	No	55/236	64/258	NE	NE		0.88 (0.61-1.2)
Visceral disease and bone	Yes	20/56	25/72	NE	26.6		0.99 (0.55–1.7)
metastasis at baseline	No	63/469	92/455	NE	NE	, i i	0.63 (0.46–0.8
Gleason score at diagnosis	≤7	21/174	34/169	NE	NE		0.56 (0.33-0.9)
	>7	62/351	83/358	NE	NE	H-H	0.73 (0.52–1.0
Previous docetaxel use	Yes	11/58	9/55	NE	NE		1.27 (0.52-3.0
	No	72/467	108/472	NE	NE	нн i i i	0.63 (0.47–0.8
Age	<65 yr	21/149	43/182	NE	NE	⊢ ⊷–1	0.56 (0.33–0.94
	65–74 yr	42/243	51/232	NE	NE	اللها أ	0.73 (0.48-1.10
	≥75 yr	20/133	23/113	NE	NE	┝━━━┻╧┫	0.74 (0.41–1.3
Baseline PSA above median	Yes	58/285	66/241	NE	NE	H	0.68 (0.48-0.9
	No	25/240	51/286	NE	NE	⊢ ⊷-1	0.56 (0.35–0.9
Baseline LDH above ULN	Yes	18/60	25/60	NE	NE		0.68 (0.37-1.2
	No	62/443	86/442	NE	NE	i Hard	0.69 (0.49–0.9
Baseline ALP above ULN	Yes	40/177	61/180	NE	NE		0.63 (0.42-0.9
	No	43/346	56/345	NE	NE	цц.	0.73 (0.49–1.0
Disease volume	High	69/325	97/335	NE	NE		0.68 (0.50-0.9)
	Low	14/200	20/192	NE	NE	царана и страна и стр	0.67 (0.34–1.3
Metastasis stage at initial	MO	7/85	11/59	NE	NE		0.40 (0.15–1.0
diagnosis	M1	71/411	101/441	NE	NE		0.72 (0.53-0.9

	No. patients (events)			
Subgroup	Enza + ADT	PBO + ADT		HK (55% CI)
All patients	574 (91)	576 (201)	нн	0.39 (0.30-0.50)
Age <65 years	148 (21)	152 (58)	⊣	0.29 (0.17-0.47)
Age ≥65 years	426 (70)	424 (143)	HH I	0.44 (0.33-0.58
Geographic region—Europe	341 (55)	344 (122)	нн	0.42 (0.31-0.58)
Gleason score at initial diagnosis <8	171 (21)	187 (47)	⊢•–1	0.42 (0.25-0.70)
Gleason score at initial diagnosis ≥8	386 (65)	373 (151)	нн	0.36 (0.27-0.48)
Disease localization at BL, bone only	268 (35)	245 (82)	HH	0.33 (0.22-0.49)
Disease localization at BL, soft tissue only	51 (5)	45 (12)		0.42 (0.15-1.20)
Disease localization at BL, bone and soft tissue	217 (50)	241 (104)		0.42 (0.30-0.60)
BL PSA value at or below overall median	293 (41)	305 (96)		0.38 (0.26-0.54
BL PSA value above overall median	279 (50)	269 (104)		0.41 (0.30–0.58
Low volume of disease	220 (14)	203 (47)		0.25 (0.14-0.46)
High volume of disease	354 (77)	373 (154)		0.43 (0.33-0.57)
No prior docetaxel therapy	471 (70)	474 (166)		0.37 (0.28-0.49)
Prior docetaxel therapy	103 (21)	102 (35)	H	0.52 (0.30-0.89)
Previous use of ADT or orchiectomy	535 (88)	515 (17 <u>9</u>)		0.41 (0.32-0.53)
No previous use of ADT or orchiectomy	39 (3)	61 (22)	HH	0.19 (0.06-0.62)

Enzamet: Selected Docetaxel-Relevant Adverse Events						
AE During First 6 Months	TS + NSAA + docetaxel n = 246	TS + ENZA + docetaxel n = 254	TS + NSAA, no docetaxel n = 312	TS + ENZA, no docetaxel n = 309		
Neutropenic fever	32 (13%)	35 (14%)	0	1 (<1%)		
Sensory neuropathy, grade 2	7 (3%)	24 (9%)	2 (<1%)	0		
Sensory neuropathy, grade 3	1 (<1%)	3 (1%)	0	0		
Motor neuropathy, grade 2	1 (<1%)	4 (2%)	0	0		
Motor neuropathy, grade 3	0	0	0	1 (<1%)		
Nail discoloration	13 (5%)	25 (10%)	0	0		
Watery eyes, grade 1 or 2	15 (6%)	52 (20%)	0	0		
Fatigue, grade 2	35 (14%)	52 (20%)	9 (3%)	32 (10%)		

AE = adverse event; ENZA = enzalutamide; TS = testosterone suppression. Sweeney C, et al. J Clin Oncol. 2019;37(18 suppl): abstract LBA2.

Agent	Agent Route Issues		Duration	Cos t	
Docetaxel	IV	Fatigue, cytopenias, diarrhea, neuropathy, hair loss	6 cycles	low	
Enzalutamide	oral	Fatigue, HTN, cognitive affects			
Apalutamide	oral	Rash, hypothyroidism, HTN	Until	high	
Darolutamide*	oral	Fatigue, HTN	progression		
Abiraterone	oral	HTN, hypokalemia,			
How will	cardio-onc selection a	ology and neuro-oncology af and management considerati	fect treatment ons?		

Primary Directed Thera	py in Low-Volume mCSP
Trial	Intervention
STAMPEDE-H ¹	Radiation to primary, low volume
SWOG 1802 (results pending) ²	Radical prostatectomy
SWOG = Southwest Oncology Group.	
1. Parker CC, et al. <i>Lancet</i> . 2018;392:2353-2366. 2. NCT0367802 (https://clinicaltrials.gov/ct2/show/NCT03678025?term=SWOG	25 (SWOG 1802) i+1802&cond=prostate+cancer&draw=2&rank=1). Accessed 5/17

Additional Treatment Considerations

- De novo versus recurrent disease at presentation
- Comorbidities
- Adverse effect profiles
- Patient preferences
- Duration of therapy
- Cost: financial/physical—patient-preference values
- Convenience
- COVID-19 concerns
- Availability of drugs
- Subsequent therapies

mCSPC: How to Choose				
Trial	Drug	Comparison	 ADT + docetaxel or ARPI is superior to ADT alone (phase 3 trials) 	
CHAARTED	docetaxel	ADT	 Is docetaxel benefit in high- volume patients only? 	
STAMPEDE	abiraterone	ADT	 ARPI benefit: high/low volume Question: therapeutic choice? 	
LATITUDE	abiraterone	ADT	TradeoffsToxicity	
TITAN	apalutamide	ADT (± DOC 11%)	Therapy durationPhysical cost	
ENZAMET	enzalutamide	ADT (± DOC 45%)	 Financial cost Is ADT alone still an option? 	

mCSPC							
Treatment	Trial, Publication Year	Population	Comparator	Phase; Study Size	Primary Endpoint	Treatment vs Control	Serious AEs
Abiraterone acetate with prednisone	LATITUDE 2017	mCSPC	ADT + PBO	3; 1199	OS	53.3 vs 36.5 mos, (HR = 0.66 [95% Cl. 0.56–0.78], <i>P</i> <.0001)	Elevated AST Elevated ALT Hypokalemia HTN Cardiac disorde
	STAMPEDE 2017	mCSPC and locally advanced PC	ADT alone	3; 1917	OS	Est 83% vs 73% alive at 3 yrs (HR = 0.63 [95% CI, 0.52– 0.76], <i>P</i> <.001)	
Enzalutamide	ENZAMET 2019	mCSPC	ADT+ nonsteroidal ART	3; 1125	OS	Est 80% vs 72% alive at 3 yrs (HR = 0.67 [95% CI, 0.52– 0.86]; <i>P</i> = .002)	Fatigue Falls Seizures Ischemic heart disease
	ARCHES 2019	mCSPC, stratified by CHAARTED Criteria	ADT + PBO	3; 1150	rPFS or death	NR vs 19 mos (HR = 0.39 [95% Cl, 0.3–0.5], <i>P</i> <.001)	
Apalutamide	TITAN 2019	mCSPC	ADT + PBO	3; 1052	rPFS or death	68.2% vs 47.5% at 24 mos (HR = 0.48 [95% Cl 0.39– 0.60], <i>P</i> <.001)	Fatigue HTN Rash
					OS	82.4% vs 73.5% alive at 2 yrs (HR = 0.67 [95% CI, 0.51– 0.89], <i>P</i> = .005)	Falls/fractures Hypothyroidism
Docetaxel	CHAARTED 2015	mCSPC	ADT alone	3; 790	OS	57.6 vs 44 mos (HR = 0.61 [95% CI, 0.47–0.80], <i>P</i> <.001)	Neutropenia Hepatotoxicity Neuropathy Hypersensitivity Fatigue
	GETUG-AFU 15 2013	mCPSC	ADT alone	3; 192	OS	58.9 vs 54.2 mos (NS)	
	STAMPEDE 2017	mCSPC and locally advanced PCa	ADT alone	3, 1086	OS	49% vs 37% at 5 yrs (HR = 0.81 [95% CI, 0.69–0.95], <i>P</i> = .009)	

Est = estimated; yrs = years; NS = not significant.

Modified from Schulte B, et al. Am Soc Clin Oncol Educ Book. 2020;40:198-207.

Conclusions

- Standard of care for mCSPC requires consideration of early addition of either docetaxel or ARPI (abiraterone acetate, apalutamide, enzalutamide) to ADT
- Triple therapy adds toxicity but does not appear to add an early survival benefit; data continue to mature
- ARPIs and docetaxel appear to have similar overall-survival benefits in patients with high-risk or high-volume disease
- AR-targeted agents have similar relative benefits for patients with high-risk disease and patients with low-risk or lowvolume disease
- Ongoing RCTs are evaluating the efficacy and safety of combination treatments for mCSPC

Managing Castration-Sensitive Prostate Cancer: How Does Your Approach Compare with the Experts'?

Resource	Address
Lowrance WT, et al. Advanced Prostate Cancer: AUA/ASTRO/SUO Guideline PART I. <i>J Urol</i> . 2021;205:14-21.	https://pubmed.ncbi.nlm.nih.gov/32960679/
Lowrance WT, et al. Advanced Prostate Cancer: AUA/ASTRO/SUO Guideline PART II. <i>J Urol</i> . 2021;205:22-29.	https://pubmed.ncbi.nlm.nih.gov/32960678/
VanderWeele DJ, et al. Metastatic hormone- sensitive prostate cancer: clinical decision making in a rapidly evolving landscape of life-prolonging therapy. <i>J Clin Oncol.</i> 2019;37:2961-2967.	https://pubmed.ncbi.nlm.nih.gov/31498754/
Shore ND, et al. Oral relugolix for androgen- deprivation therapy in advanced prostate cancer. <i>N</i> <i>Engl J Med.</i> 2020;382:2187-2196.	https://pubmed.ncbi.nlm.nih.gov/32469183/
Sweeney CJ, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. <i>N Engl J Med.</i> 2015;373:737-746.	https://pubmed.ncbi.nlm.nih.gov/26244877/
Vale CL, et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. <i>Lancet Oncol.</i> 2016;17:243-256.	https://pubmed.ncbi.nlm.nih.gov/26718929/
Kyriakopoulos CE, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long- term survival analysis of the randomized phase III E3805 CHAARTED Trial. <i>J Clin Oncol</i> . 2018;36:1080- 1087.	https://pubmed.ncbi.nlm.nih.gov/29384722/
James ND, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. <i>Lancet</i> . 2016;387:1163-1177.	https://pubmed.ncbi.nlm.nih.gov/26719232/
Clarke NW, et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. <i>Ann Oncol</i> . 2019;30:1992-2003.	https://pubmed.ncbi.nlm.nih.gov/31560068/
Fizazi K, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. <i>N Engl J Med</i> . 2017;377:352-360.	https://pubmed.ncbi.nlm.nih.gov/28578607/

Resource	Address
Fizazi K, et al. Abiraterone acetate plus prednisone	https://pubmed.ncbi.nlm.nih.gov/30987939/
in patients with newly diagnosed high-risk	
metastatic castration-sensitive prostate cancer.	
(LATITUDE): final overall survival analysis of a	
randomised, double-blind, phase 3 trial. Lancet	
Oncol. 2019;20:686-700.	
Hoyle AP, et al. Abiraterone in "high-" and "low-	https://pubmed.ncbi.nlm.nih.gov/31447077/
risk" metastatic hormone-sensitive prostate cancer.	
Eur Urol. 2019;76:719-728.	
Sydes MR, et al. Adding abiraterone or docetaxel to	https://pubmed.ncbi.nlm.nih.gov/29529169/
long-term hormone therapy for prostate cancer:	
directly randomised data from the STAMPEDE multi-	
arm, multi-stage platform protocol. Ann Oncol.	
2018;29:1235-1248.	
Armstrong AJ, et al. ARCHES: A randomized, phase iii	https://pubmed.ncbi.nlm.nih.gov/31329516/
study of androgen deprivation therapy with	
enzalutamide or placebo in men with metastatic	
hormone-sensitive prostate cancer. J Clin Oncol.	
2019;37:2974-2986.	
Davis ID, et al. Enzalutamide with standard first-line	https://pubmed.ncbi.nlm.nih.gov/31157964/
therapy in metastatic prostate cancer. N Engl J Med.	
2019;381:121-131.	
Chi KN, et al. Apalutamide for metastatic, castration-	https://pubmed.ncbi.nlm.nih.gov/31150574/
sensitive prostate cancer. N Engl J Med.	
2019;381:13-24.	
Parker CC, et al. Radiotherapy to the primary	https://pubmed.ncbi.nlm.nih.gov/30355464/
tumour for newly diagnosed, metastatic prostate	
cancer (STAMPEDE): a randomised controlled phase	
3 trial. Lancet. 2018;392:2353-2366.	
Ost P, et al. Metastasis-directed therapy of regional	https://pubmed.ncbi.nlm.nih.gov/25240974/
and distant recurrences after curative treatment of	
prostate cancer: a systematic review of the	
literature. Eur Urol. 2015;67:852-863.	
Radwan N, et al. A phase II randomized trial of	https://pubmed.ncbi.nlm.nih.gov/28662647/
Observation versus stereotactic ablative RadiatIon	
for OLigometastatic prostate CancEr (ORIOLE). BMC	
Cancer. 2017;17:453.	
Ost P, et al. Surveillance or metastasis-directed	https://pubmed.ncbi.nlm.nih.gov/29240541/
therapy for oligometastatic prostate cancer	
recurrence: a prospective, randomized, multicenter	
phase II trial. J Clin Oncol. 2018;36:446-453.	