

ECHO SERIES

Precision Medicine in Action: Using Thyroid Cancer Biomarkers to Match the Right Patient with the Right Treatment at the Right Time

MONDAY, DECEMBER 7, 2020

Sylvia L. Asa, MD, PhD Consultant in Endocrine Pathology University Hospitals Cleveland Medical Center And University Health Network, Toronto Professor, Department of Pathology Case Western Reserve University Cleveland, OH

Lori Wirth, MD

The Elizabeth and Michael Ruane Chair of Oncology Medical Director of Head and Neck Oncology Massachusetts General Hospital Associate Professor of Medicine Harvard University Medical School Boston, MA

This activity is provided by Med Learning Group. This activity is co-provided by Ultimate Medical Academy/Complete Conference Management (CCM).

Precision Medicine in Action: Using Thyroid Cancer Biomarkers to Match the Right Patient with the Right Treatment at the Right Time

FACULTY

Sylvia L. Asa, MD, PhD

Consultant in Endocrine Pathology University Hospitals Cleveland Medical Center And University Health Network, Toronto Professor, Department of Pathology Case Western Reserve University Cleveland, OH

Lori Wirth, MD

The Elizabeth and Michael Ruane Chair of Oncology Medical Director of Head and Neck Oncology Massachusetts General Hospital Associate Professor of Medicine Harvard Medical School Boston, MA

PROGRAM OVERVIEW

This case-based live virtual activity will cover the treatment and management of patients with thyroid cancer.

TARGET AUDIENCE

This educational activity is intended for oncologists and endocrinologists as well as pathologists, along with their multidisciplinary teams in academic centers and the community setting who are especially challenged in keeping up with the most current data on new/emerging less commonly occurring genomic alterations, genomic testing methodologies, and optimal treatment decisions for patients with thyroid cancer.

LEARNING OBJECTIVES

- Utilize best practices for identifying actionable thyroid cancer molecular/genomic alterations in routine clinical practice
- Integrate available and emerging targeted treatment options into routine clinical practice for the treatment of patients with advanced thyroid cancer based on results showing actionable molecular/genomic alterations

ACCREDITATION STATEMENT

Med Learning Group is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. This CME activity was planned and produced in accordance with the ACCME Essentials.

CREDIT DESIGNATION STATEMENT

Med Learning Group designates this live virtual activity for a maximum of 1.0 AMA Category 1 Credit[™]. Physicians should claim only the credit commensurate with the extent of their participation in the live virtual activity.

NURSING CREDIT INFORMATION

Purpose: This program would be beneficial for nurses involved in the care of patients with thyroid cancer. **CNE Credits:** 1.0 ANCC Contact Hour.

CNE ACCREDITATION STATEMENT

Ultimate Medical Academy/CCM is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. Awarded 1.0 contact hour of continuing nursing education of RNs and APNs.

ABIM MAINTENANCE OF CERTIFICATION

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 1.0 Medical Knowledge MOC point in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit.

DISCLOSURE POLICY STATEMENT

In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards for Commercial Support, educational programs sponsored by Med Learning Group must demonstrate balance, independence, objectivity, and scientific rigor. All faculty, authors, editors, staff, and planning committee members participating in an MLG-sponsored activity are required to disclose any relevant financial interest or other relationship with the manufacturers of any commercial products and/or providers of commercial services that are discussed in an educational activity.

DISCLOSURE OF CONFLICTS OF INTEREST

Sylvia Asa, MD, PhD received consulting fees from Leica Biosystems Digital Imaging Medical Advisory Board.

Lori Wirth, MD has received honorarium for advisory roles from:

- Ayala Pharmaceuticals
- Bayer Healthcare Pharmaceuticals (consulting fees)
- Blueprint Medicines (consulting fees)
- Cue BioPharma (consulting fees)
- Cullinan Oncology
- Eli Lilly (consulting fees)
- Eisai (consulting fees)
- Genentech USA

- Merck (consulting fees)
- Loxo Oncology (consulting fees)
- NewLink Genetics
- Novartis
- Rakuten Medical
- Honoraria received for serving on a steering committee for Eli Lilly
- Honoraria received for serving on a data safety monitoring board for Lovance Biotherapeutics

CME Content Review

The content of this activity was independently peer-reviewed. The reviewer of this activity has nothing to disclose.

CNE Content Review

The content of this activity was peer-reviewed by a nurse reviewer. The reviewer of this activity has nothing to disclose.

The staff, planners and managers reported the following financial relationships or relationships to products or devices they or their spouse/life partner have with commercial interests related to the content of this CME/CE activity:

- Matthew Frese, General Manager of Med Learning Group, has nothing to disclose.
- Christina Gallo, SVP, Educational Development of Med Learning Group, has nothing to disclose.
- Ana Maria Albino, Senior Program Manager of Med Learning Group, has nothing to disclose.
- David Chatman, Medical Director of Med Learning Group, has nothing to disclose.
- Lauren Welch, MA, VP of Accreditation and Outcomes of Med Learning Group, has nothing to disclose.
- Brianna Hanson, Accreditation and Outcomes Coordinator of Med Learning Group, has nothing to disclose.

DISCLOSURE OF UNLABELED USE

Med Learning Group requires that faculty participating in any CME activity disclose to the audience when discussing any unlabeled or investigational use of any commercial product or device not yet approved for use in the United States.

During this lecture, faculty may mention the use of medications for both FDA-approved and non-approved indications.

METHOD OF PARTICIPATION

There are no fees for participating and receiving CME/CE credit for this live virtual activity. To receive CME/CE credit participants must:

- 1. Read the CME/CNE information and faculty disclosures.
- 2. Participate in the live virtual activity.
- 3. Submit the evaluation form to Med Learning Group.

You will receive your certificate upon completion as a downloadable file.

DISCLAIMER

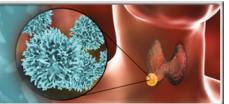
Med Learning Group makes every effort to develop CME activities that are science-based. This activity is designed for educational purposes. Participants have a responsibility to use this information to enhance their professional development in an effort to improve patient outcomes. Conclusions drawn by the participants should be derived from careful consideration of all available scientific information. The participant should use his/her clinical judgment, knowledge, experience, and diagnostic decision-making before applying any information, whether provided here or by others, for any professional use.

For CME questions, please contact Med Learning Group at info@medlearninggroup.com Contact this CME provider at Med Learning Group for privacy and confidentiality policy statement information at www.medlearninggroup.com/privacy-policy/

AMERICANS WITH DISABILITIES ACT

Staff will be glad to assist you with any special needs. Please contact Med Learning Group prior to participating at <u>info@medlearninggroup.com</u>

This activity is provided by Med Learning Group.



This activity is co-provided by Ultimate Medical Academy/Complete Conference Management (CCM).

Supported by an educational grant from Lilly.

Copyright © 2020 Med Learning Group. All rights reserved. These materials may be used for personal use only. Any rebroadcast, distribution, or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Med Learning Group is prohibited.

PROGAM AGENDA

Thyroid cancer overview Ι.

- a. Epidemiology
- b. Histological subtypes
- c. Pathophysiology and disease course
- d. Traditional standard of care therapies for advanced thyroid cancer
- e. Advantages and disadvantages associated with the traditional watch and wait approach

II. Molecular/Genomic alterations associated with thyroid cancer

- a. RET mutations as an example
- b. Types of tests available to detect actionable molecular/genomic alterations in patients with thyroid cancer
- c. Guidance on which tests should be used, when they should be used, and which patients should be tested
- d. Best practices pertaining to processes and workflows for the integration of routine molecular/genomic testing into clinical practice

III. Applying precision medicine approaches to the treatment of patients with advanced thyroid cancer

- a. Available targeted therapeutic options for patients with advanced thyroid cancer
- b. Efficacy and safety profiles of available and emerging targeted therapeutic options for patients with advanced thyroid cancer
- c. Integrating available and emerging targeted therapeutic options for patients with advanced thyroid cancer into clinical practice

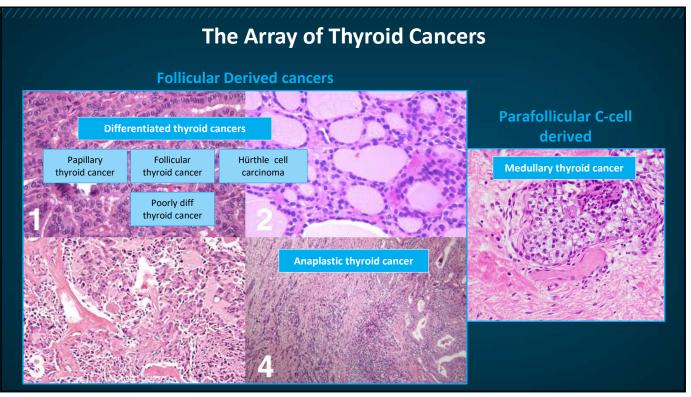
IV. **Conclusion and questions and answers**

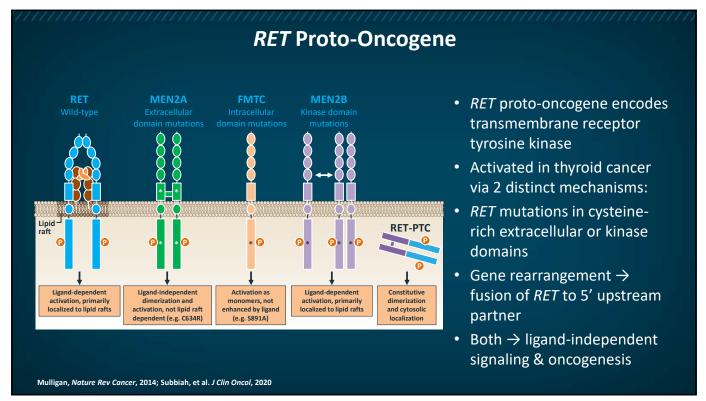
Posting Questions in Zoom Chat

- If you would like to post a question during the presentation, please submit your inquiry in the chat feature.
- Remember to direct all questions to the "co-host." There is a toggle button above the typing space that allows you to specify the location of your message delivery.

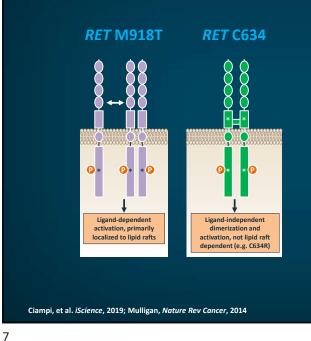
Precision Medicine in Action: Using Thyroid Cancer Biomarkers to Match the Right Patient with the Right Treatment at the Right Time: TeleECHO Series

Sylvia L. Asa, MD, PhD

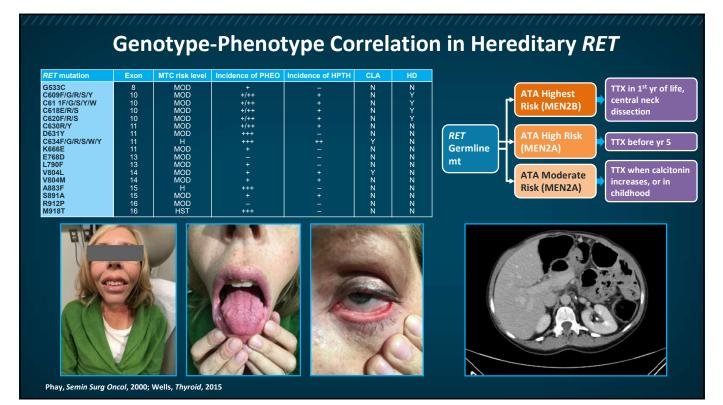

Consultant in Endocrine Pathology University Hospitals Cleveland Medical Center And University Health Network, Toronto Professor, Department of Pathology Case Western Reserve University Cleveland, OH

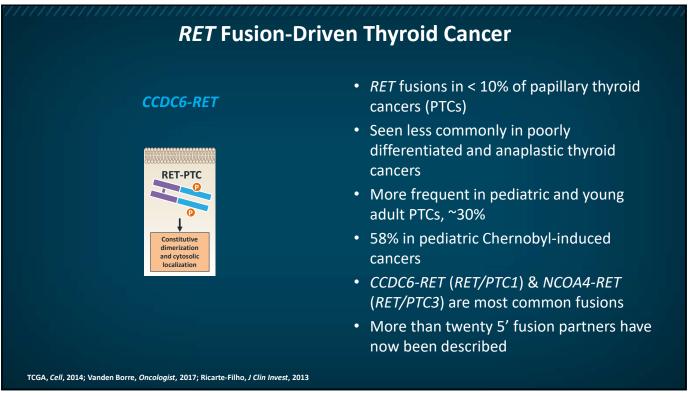

Lori J. Wirth, MD

The Elizabeth and Michael Ruane Chair of Oncology Medical Director of Head and Neck Oncology Massachusetts General Hospital Associate Professor of Medicine Harvard University Medical School Boston, MA

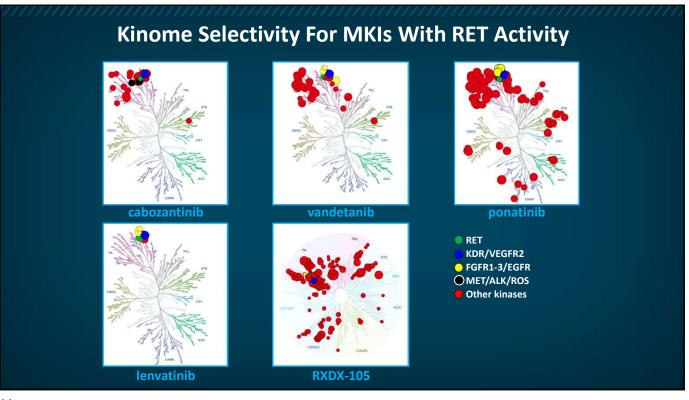


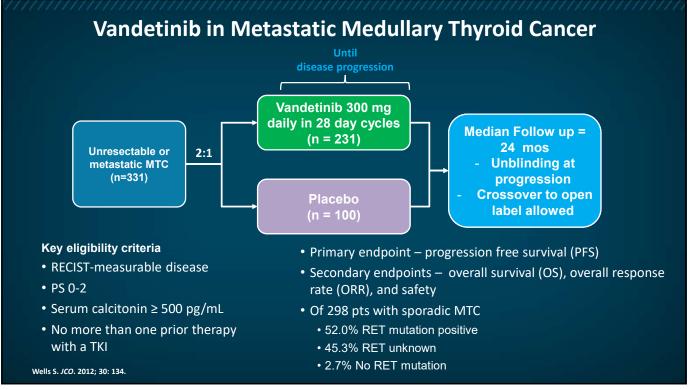
1111111111	Educational Objectives						
	est practices for identifying actionable thyroid cancer molecular/genomic ons in routine clinical practice						
practice	e available and emerging targeted treatment options into routine clinical of patients with advanced thyroid cancer based on results showing actionable ar/genomic alterations						



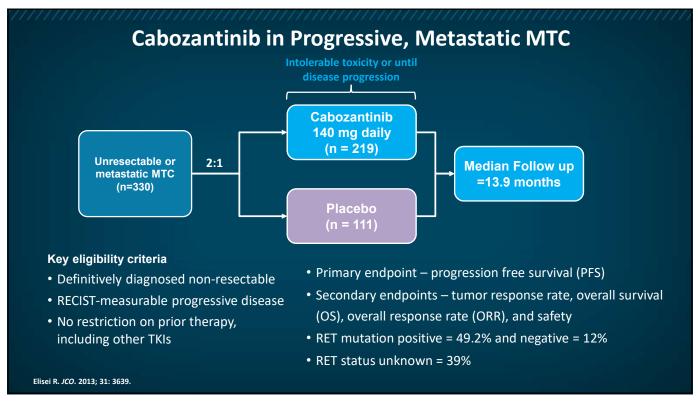


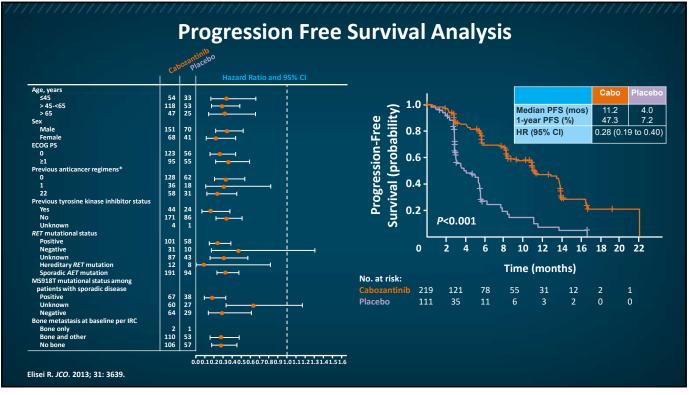
Most Common RET Alterations in Medullary Thyroid Cancer (MTC)


- RET mutations drive 60% of MTCs
- 20% of MTC are hereditary all patients have germline *RET* mutations
- 50% of sporadic MTCs harbor somatic *RET* mutations
- *RET* M918T most common somatic mutation
- Germline *RET* M918T occurs in nearly all MEN 2B patients
- Germline *RET* C634 most common hereditary mutation (MEN 2A)
- RET C634 can also occur somatically



Vandetanib – Safety and Tolerability in MTC


Adverse Event	Vandetar	ib (n=231)	Placebo (n=99)		
Auverse Event	No.	%	No.	%	
Any grade occurring with a	n incidence = 10)% overall			
Diarrhea	130	56	26	26	
Rash	104	45	11	11	
Nausea	77	33	16	16	
Hypertension	73	32	5	5	
Fatigue	55	24	23	23	
Headache	59	26	9	9	
Decreased appetite	49	21	12	12	
Acne	46	20	5	5	
Asthenia	34	14	11	11	
Vomiting	34	14	7	7	
Back pain	21	9	20	20	
Dry skin	35	15	5	5	
Insomnia	30	13	10	10	
Abdominal pain	33	14	5	5	
Dermatitis acneiform	35	15	2	2	
Cough	25	10	10	10	
Nasopharyngitis	26	11	9	9	
ECG QT prolonged*	33	14	1	1	
Weight decreased	24	10	9	9	


h Adverse Events (safety

Adverse Event	Vandetar	nib (n=231)	Placebo (n=99)					
Adverse Event	No.	No. %		%				
Grade 3+ occurring with an incidence of \geq 2% on either arm								
Diarrhea	25	11	2	2				
Hypertension	20	9	0	-				
ECG QT prolonged*	18	8	1	1				
Fatigue	13	6	1	1				
Decreased appetite	9	4	0	-				
Rash	8	4	1	1				
Asthenia	6	3	1	1				
Dyspnea	3	1	3	3				
Back pain	1	0.4	3	3				
Syncope	0		2	2				

Prolonged QTc – vandetanib is only available through REMS program.

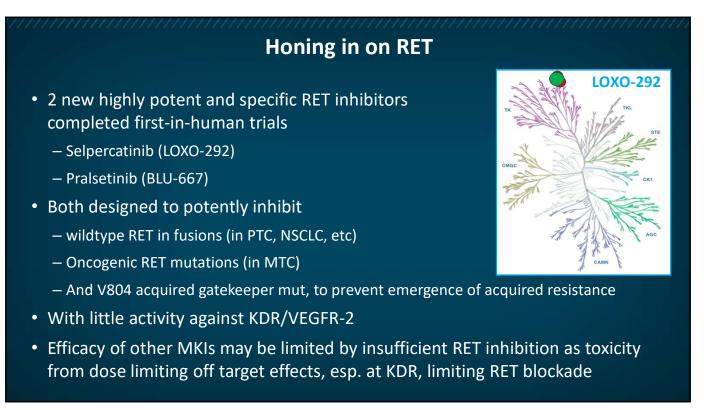
*As defined according to the National Cancer Institute's Common Terminology Criteria for Adverse Events, v3 (see Results for the incidence of protocol-defined QTc prolongation as described in Methods, Safety and Tolerability). Wells S. JCO. 2012; 30: 134.

Safety Analysis and Adverse Events

AEs Occurring in ≥ 10% of Cabozantinib-Treated Patients

by Maximum Severity Reported										
	Ca	bozantii	nib (n=21	L4)		Placebo (n=109)				
	All Grades		Grad	Grade ≥3		All Grades		le ≥3		
Adverse Events	No.	%	No.	%	No.	%	No.	%		
Diarrhea	135	63.1	34	15.9	36	33.0	2	1.8		
Palmar-plantar	107	50.0	27	12.6	2	1.8	0	—		
erythrodysesthesia*										
Decreased weight	102	47.7	10	4.7	11	10.1	0	—		
Decreased appetite	98	45.8	10	4.7	17	15.6	1	0.9		
Nausea	92	43.0	3	1.4	23	21.1	0	—		
Fatigue	87	40.7	20	9.3	31	28.4	3	2.8		
Dysgeusia	73	34.1	1	0.5	6	5.5	0	—		
Hair color changes	72	33.6	1	0.5	1	0.9	0	—		
Hypertension	70	32.7	18	8.4	5	4.6	1	0.9		
Stomatitis	62	29.0	4	1.9	3	2.8	0	—		
Constipation	57	26.6	0	—	6	5.5	0	—		
Hemorrhage	54	25.2	7	3.3	17	15.6	1	0.9		
Vomiting	62	24.3	5	2.3	2	1.8	1	0.9		
Mucosal inflammation	50	23.4	7	3.3	4	3.7	0	—		
Asthenia	45	21.0	12	5.6	16	14.7	2	1.8		
Dysphonia	43	20.1	0	—	10	9.2	0	—		
Rash	41	19.2	2	0.9	11	10.1	0	_		
Dry skin	41	19.2	0	—	3	2.8	0	—		
Headache	39	18.2	1	0.5	9	8.3	0	—		
Oropharyngeal pain	38	17.8	1	0.5	5	4.6	0	—		
Abdominal pain	36	16.8	6	2.8	7	6.4	1	0.9		
Alopecia	35	16.4	0	—	2	1.8	0	—		
Pain in extremity	33	15.4	3	1.4	12	11.0	1	0.9		
Back pain	32	15.0	5	2.3	12	11.0	1	0.9		
Dyspnea	29	13.6	5	2.3	19	17.4	11	10.1		
Arthralgia	29	13.6	2	0.9	8	7.3	0	_		

AEs Associated With VEGF Pathway Inhibition										
	Cabozantinib (n=214)				Placebo (n=109)					
	All Grades		All Grades Grade ≥3		All Grades		Grade ≥3			
Adverse Events	No.	%	No.	%	No.	%	No.	%		
Hypertension	70	32.7	18	8.4	5	4.6	1	0.9		
Hemorrhage	54	25.2	7	3.3	17	16.6	1	0.9		
Venous thrombosis	12	5.6	8	3.7	3	2.8	2	1.8		
GI perforation	7	3.3	7	3.3	0	—	0	—		
GI fistula	2	0.9	1	0.5	0	—	0	—		
Abdominal/pelvic abscess	5	2.3	2	0.9	0	—	0	_		
Non-Gl fistula	8	3.7	4	1.9	0	_	0	_		
Arterial thrombosis	5	2.3	2	0.9	0	_	0	_		
Proteinuria	4	1.9	2	0.9	0	_	0	_		
Wound complication	4	1.9	2	0.9	1	0.9	0	_		
Osteonecrosis	3	1.4	1	0.5	0	_	0	_		
RPLS	1	0.5	1	0.5	0	_	0	_		


Treatment-related AEs:

- 79% of cabo pts had dose reductions

- 16% of cabo pts had dose discontinued

RPLS, reversible posterior leukoencephalopathy syndrome; VEGF, vascular endothelial growth factor.

Elisei R. JCO. 2013; 31: 3639.

LIBRETTO-001

Efficacy of Selpercatinib in RET-Altered Thyroid Cancers

- LIBRETTO-001: open-label phase 1-2 trial, 65 centers, 12 countries
- 3 thyroid cohorts:
 - RET-mutant MTC, previously treated with vandetinib +/or cabozantinib
 - RET-mutant MTC, not previously treated with vandetinib or cabozantinib
 - RET fusion-positive previously treated thyroid cancer

Wirth L. N Engl J Med. 2020;383: 825-835.

		RET-Mutant MTC Previously Treated (N=55)	RET-Mutant MTC Not Previously Treated (N=88)	Previously Treate RET Fusion— Positive Thyroid Cance
 RET-mutant MTC, previously treated: 	Characteristics Median age (range) — yr	57 (17-84)	58 (15-82)	(N-19) 54 (25-88)
n = 55	Sex— no. (%) Male Female Race— no. (%) [†]	36 (65) 19 (35)	58 (66) 30 (34)	9 (47) 10 (53)
– 60% <i>RET</i> M918T	White Asian Black	49 (89) 0 1 (2)	75 (85) 4 (5) 1 (1)	14 (74) 2 (11) 1 (5)
 – 13% extracellular cysteine-rich domain mt 	Other ECOG performance-status score — no. (%) 0 1	5 (9) 11 (20) 41 (75)	8 (9) 43 (49) 42 (48)	2 (11)‡ 5 (26) 12 (63)
 Familial and sporadic patients enrolled 	2 Histologic type of thyroid cancer Medullary Papillary	3 (5) 55 (100) —	3 (3) 88 (100) —	2 (11)
• <i>RET</i> -mutant MTC, not previously	Poorly differentiated Hürthle cell Anaplastic Median no. of previous systemic regimens (range)	 2 (1-8)	 0 (0-2)	3 (16) 1 (5) 2 (11) 4 (1-7)
treated: n = 88	Previous regimen — no. (96) Cabozantinib, vandetanib, or both Vandetanib only	55 (100) 18 (33)	0	- -
 RET fusion+ thyroid cancer: n = 19 	Cabozantinib only Cabozantinib and vandetanib Radioiodine Sorafenib, lenvatinib, or both	13 (24) 24 (44) 		
– PTC, PDTC, ATC, HCC	Muktitargeted kinase inhibitor therapy 1 ≥2 Therapy other than multitargeted kinase inhibitor	55 (100) 26 (47) 29 (53) 17 (31)	7 (8) 6 (7) 1 (1) 9 (10)	15 (79) 7 (37 8 (42) 14 (74)
– 47% CCDC6-RET	therapy Brain metastases — no. (%) <i>RET</i> alteration — no. (%) <i>RET</i> M918T mutation	4 (7) 33 (60)	2 (2) 49 (36)	6 (32) —
– 32% NCOA4-RET	RET V804 M/L mutation RET extracellular cysteine mutation Other mutations CCDC6-RET fusion	5 (9) 7 (13) 10 (18)	6(7) 20 (23) 13 (15)	
Wirth L. <i>N Engl J Med.</i> 2020;383: 825-835.	NCOA4-RET fusion Other RET fusion		_	6 (32) 4 (21)

Selpercatinib Safety Profile in Thyroid Patients

 Most common ≥ gr 3/4 treatment-related AEs

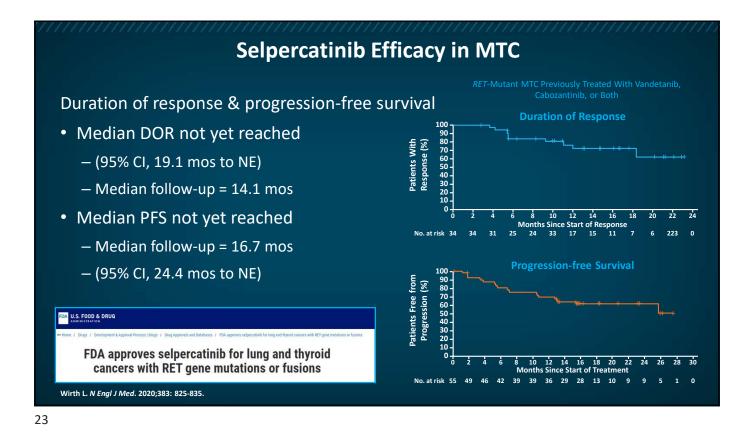
– HTN

- Transaminitis
- Diarrhea
- 30% patients had dose reduction d/t TRAE
- 2% discontinued selpercatinib d/t TRAE

AEs reported in \geq 15%										
	Adv	erse Events	s, Regardles	Treatment-Related Adverse Events						
Adverse Events	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4	Any Grade		
		Number of patients (percent)								
Any adverse event	9 (6)	42 (26)	95 (59)	11 (7)	162 (100)	45 (28)	3 (2)	153 (94)		
Dry mouth	69 (43)	5 (3)	0	0	74 (46)	0	0	63 (39)		
Hypertension	10 (6)	25 (15)	34 (21)	0	69 (43)	19 (12)	0	49 (30)		
Diarrhea	44 (27)	8 (5)	9 (6)	0	61 (38)	4 (3)	0	27 (17)		
Fatigue	35 (22)	24 (15)	2 (1)	0	61 (38)	1 (1)	0	41 (25)		
Increased aspartate	37 (23)	6 (4)	13 (8)	1 (1)	57 (35)	12(7)	1 (1)	45 (28)		
aminotransferase level								i i		
Nausea	44 (27)	13 (8)	0	0	57 (35)	0	0	25 (15)		
Constipation	44 (27)	11 (7)	1 (1)	0	56 (35)	0	0	26 (16)		
Increased alanine	26 (16)	7 (4)	17 (10)	1 (1)	51 (31)	16 (10)	1 (1)	42 (26)		
aminotransferase level			4 (2)	Ô.	51 (31)	1 (1)	0	21 (13)		
Headache	36 (22)	11 (7)								
Peripheral edema	42 (26)	5 (3)	1(1)	0	48 (30)	0	0	29 (18)		
Increased blood creatinine level	27 (17)	12(7)	0	0	39 (24)	0	0	22 (14)		
Abdominal pain	25 (15)	8 (5)	5 (3)	0	38 (23)	0	0	6 (4)		
Arthralgia	25 (15)	10 (6)	Ô,	0	35 (22)	0	0	8 (5)		
Vomiting	26 (16)	8 (5)	1(1)	0	35 (22)	0	0	12(7)		
Hypocalcemia	14 (9)	13 (8)	6 (4)	1 (1)	34 (21)	0	0	5 (3)		
Back pain	19 (12)	10 (6)	2 (1)	ò́	31 (19)	0	0	1 (1)		
QT interval prolonged on	11 (7)	16 (10)	4 (2)	0	31 (19)	3 (2)	0	21 (13)		
electrocardiography										
Cough	25 (15)	4 (2)	0	0	29 (18)	0	0	2 (1)		
Rash	25 (15)	3 (2)	0	0	28 (17)	0	0	13 (8)		
Dizziness	25 (15)	2 (1)	0	0	27 (17)	0	0	9 (6)		
Abdominal distension	18 (11)	7 (4)	0	0	25 (15)	0	0	12 (7)		
Hypothyroidism	14 (9)	11 (7)	0	0	25 (15)	0	0	12 (7)		
Weight increased	11 (7)	9 (6)	5 (3)	0	25 (15)	1 (1)	0	8 (5)		

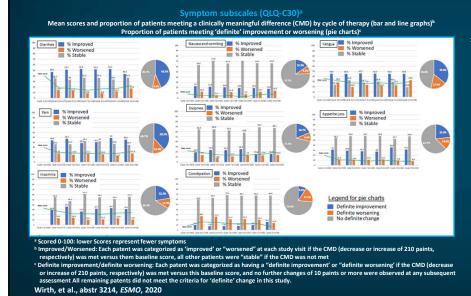
d/t = due to . TRAE = treatment-related adverse events. Wirth L. *N Engl J Med*. 2020;383: 825-835.

21


Selpercatinib Efficacy in MTC

Objective response rate per RECIST v1.1, determined by independent review committee

- *RET*-mutant MTC, previously treated:
 - ORR = 69% (95% Cl, 55 to 81)
 - CR = 9%, PR = 60%
- *RET*-mutant MTC, not previously treated:
 - ORR = 73% (95% Cl, 62 to 82)
 - CR = 11%, PR = 61%
- Responses seen across all RET mutations
 - incl RET V804


Vandetanib Cabozantinib Both vandetanib 40and cabozantinib Maximum Change In Tumor Size (%) 20 0 --20 -40 -60 _20 -100 **RET-Mutant MTC Not Previously Treated With Vandetanib or Cabozan** 40-20 Maximum Change In Tumor Size (%) 0 --20 --40 -60 -100

Wirth L. N Engl J Med. 2020;383: 825-835.

LIBRETTO-001 Patient-Reported Outcomes in MTC

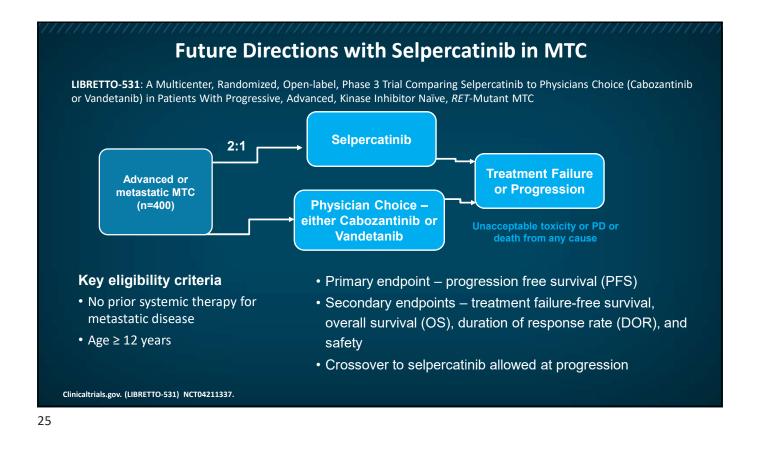
• EORTC QLQ-C30 & Modified Systemic-therapy Induced Diarrhea Assessment Tool (mSTIDAT)

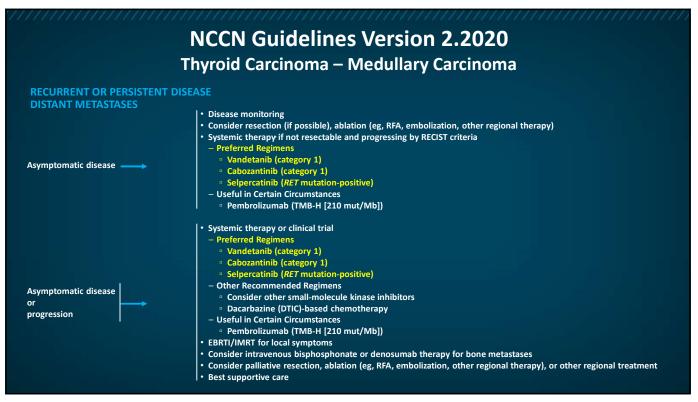
 25.3
 17.3

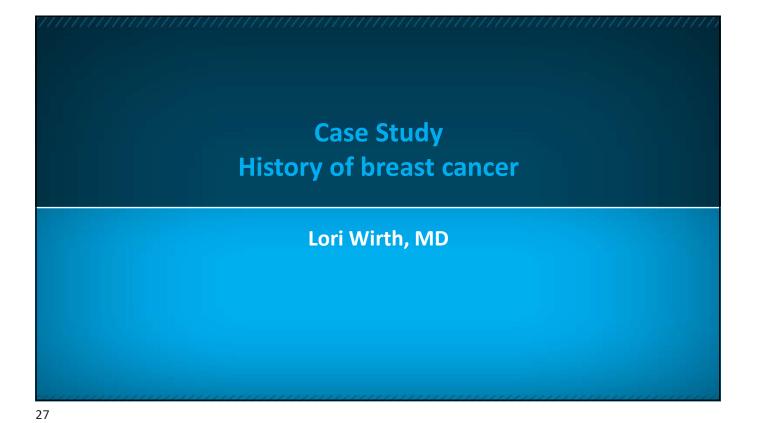
 40
 7.4
 10.5
 63

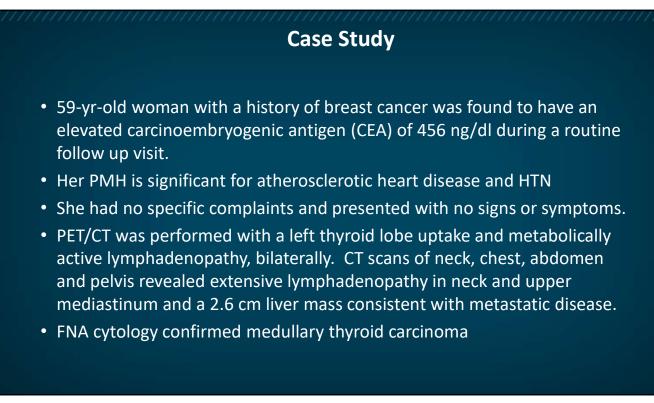
 60
 7.4
 10.5
 63

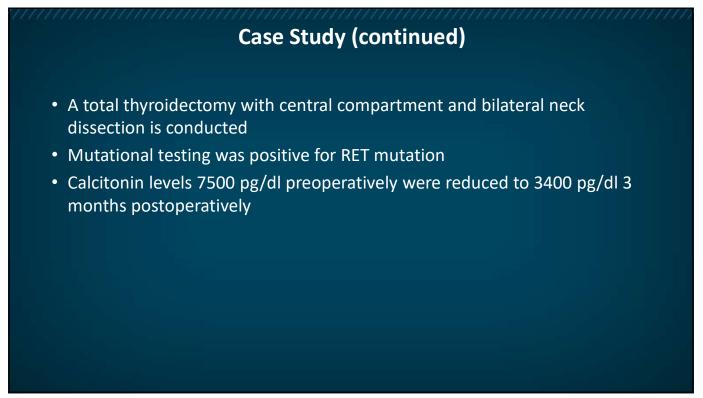
 61
 2.8
 2.9
 0
 60
 63

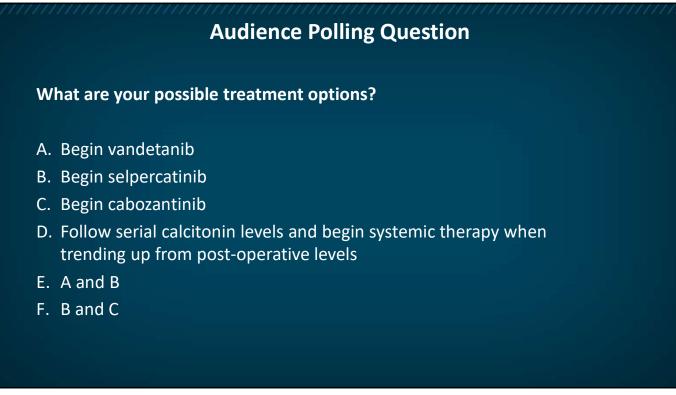

 62
 6.2
 2.9
 0
 60
 7.4
 10.5
 63

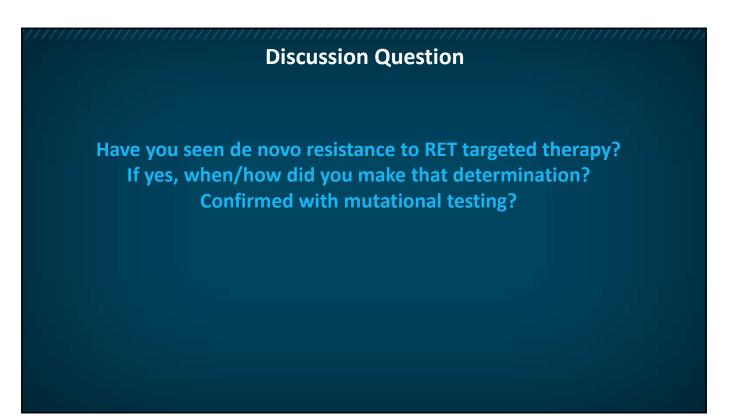

 6.7
 8.9
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.1
 1.2
 1.2
 1.2
 1.1</

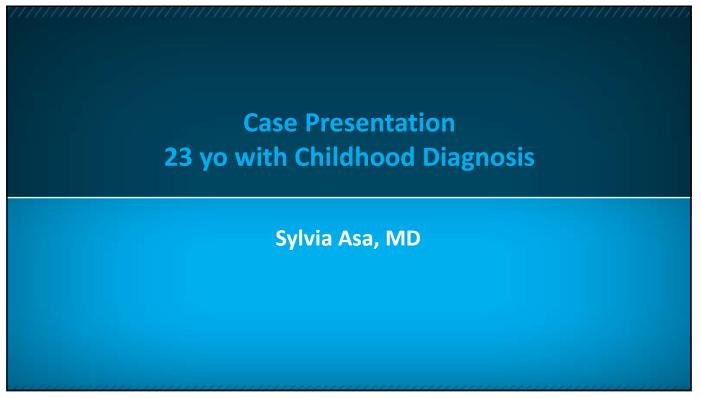

Line graph: proportion of patients experiencing diarrhea Bar graph: proportion of those patients with diarrhea who indicate it as 'severe'

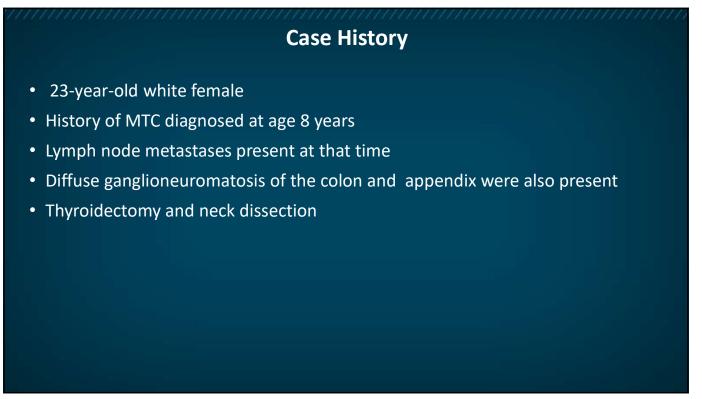

Conclusions:

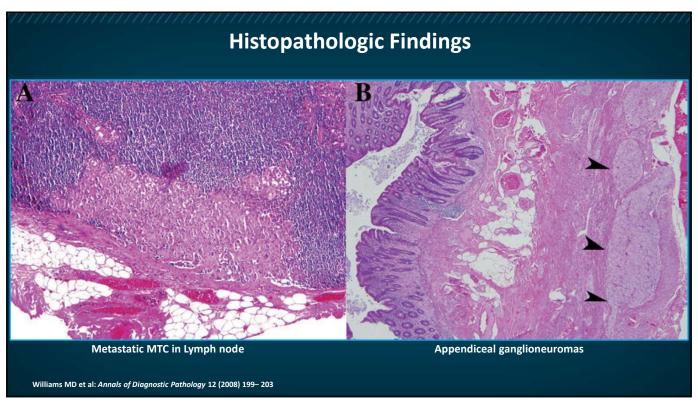

- Gl symptoms, esp. diarrhea, frequent at baseline
- After initiation of selpercatinib, pre-defined clinically meaningful ↓ in diarrhea by Cycle 3 seen
- Most patients improved or remained stable on each subscale of QLQ-C30
- Data suggest favorable tolerability of selpercatinib in *RET*-mutant MTC

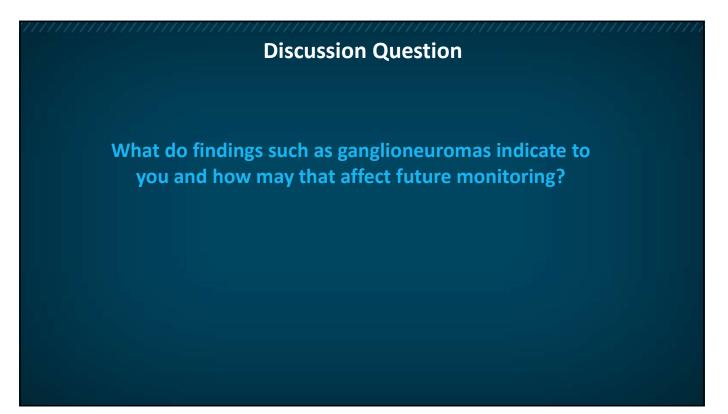


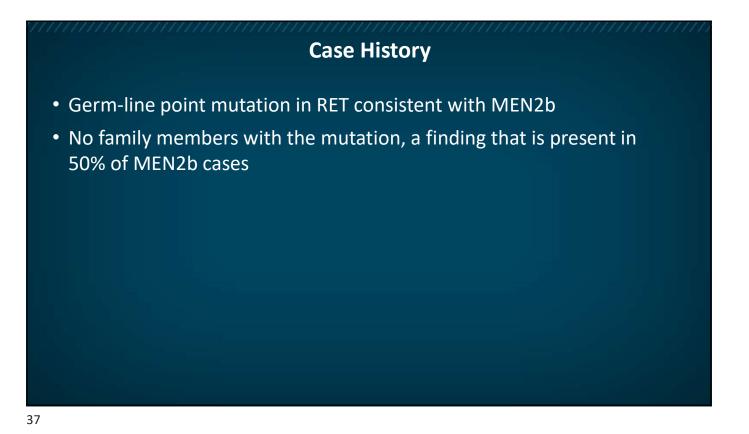


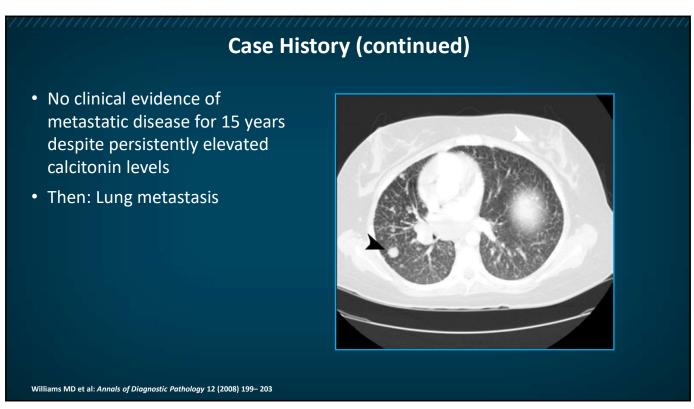



Case Study (continued) Patient begins on selpercatinib Monitor calcitonin and CEA every 3 months Three months after start of selpercatinib patient's calcitonin and CEA are WNL Patient's LFTs are WNL



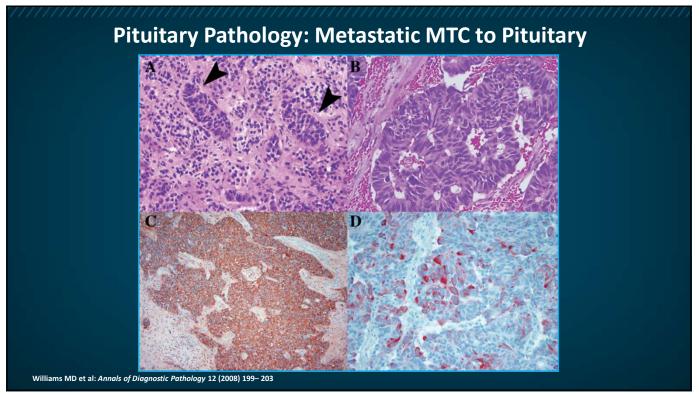


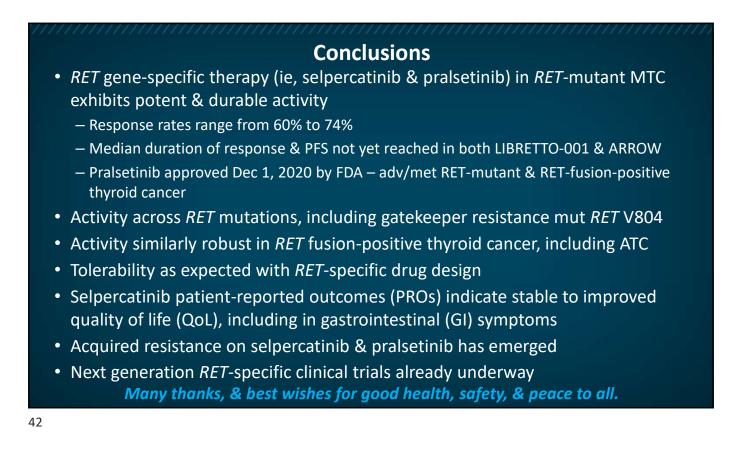


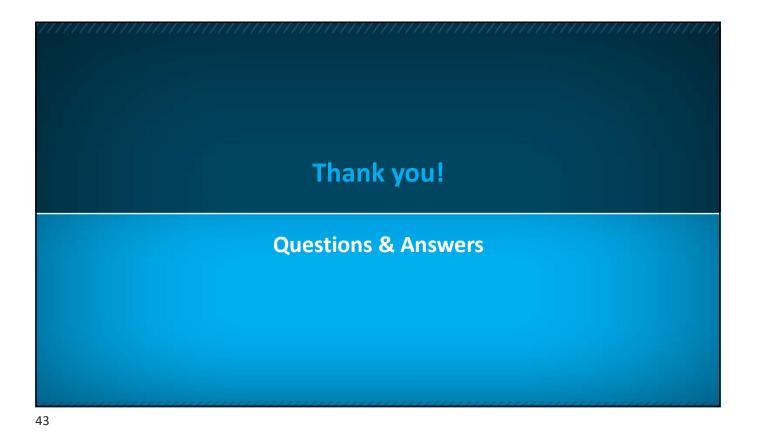


Polling Question


In a patient with a history similar to this case; RET-positive, MTC diagnosed in childhood, s/p thyroidectomy and neck dissection, with persistently elevated calcitonin levels what would be your recommendation upon initial diagnosis?


A. Monitor calcitonin and CEA levels every 6 – 12 months


B. Monitor calcitonin, CEA and conduct CT scans every 12 months


C. Although asymptomatic, begin systemic RET-targeted therapy and monitor calcitonin and CEA levels

D. All of the above

